stronger collection
This commit is contained in:
		
							
								
								
									
										16
									
								
								czf.v
									
									
									
									
									
								
							
							
						
						
									
										16
									
								
								czf.v
									
									
									
									
									
								
							@@ -311,3 +311,19 @@ Proof.
 | 
				
			|||||||
  2: { rewrite Hx. apply (proj2_sig Hϕ'). }
 | 
					  2: { rewrite Hx. apply (proj2_sig Hϕ'). }
 | 
				
			||||||
  exists x. cbn. reflexivity.
 | 
					  exists x. cbn. reflexivity.
 | 
				
			||||||
Qed.
 | 
					Qed.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Theorem CZF_collection_stong (a : V) (ϕ : V → V → Prop)
 | 
				
			||||||
 | 
					        `{Proper _ ((≡) ==> (≡) ==> (impl)) ϕ} :
 | 
				
			||||||
 | 
					  (forall (x : V), x ∈ a → { y | ϕ x y }) →
 | 
				
			||||||
 | 
					  exists (b : V), (forall (y : V), y ∈ b → exists x, x ∈ a ∧ ϕ x y ).
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					  intros Hϕ.
 | 
				
			||||||
 | 
					  exists (coll a ϕ Hϕ). intros yy Hyy.
 | 
				
			||||||
 | 
					  destruct a as [A f].
 | 
				
			||||||
 | 
					  destruct Hyy as [y Hy]. simpl in *.
 | 
				
			||||||
 | 
					  exists (f y). split.
 | 
				
			||||||
 | 
					  { exists y. reflexivity. }
 | 
				
			||||||
 | 
					  rewrite Hy.
 | 
				
			||||||
 | 
					  set (Hϕ':=Hϕ (f y) (ex_intro (λ z, f y ≡ f z) y (reflexivity _))).
 | 
				
			||||||
 | 
					  apply (proj2_sig Hϕ').
 | 
				
			||||||
 | 
					Qed.
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user