Hacky version of the Collection axiom
This commit is contained in:
		
							
								
								
									
										59
									
								
								czf.v
									
									
									
									
									
								
							
							
						
						
									
										59
									
								
								czf.v
									
									
									
									
									
								
							@@ -1,5 +1,4 @@
 | 
			
		||||
From stdpp Require Import base.
 | 
			
		||||
From Coq Require Import Logic.PropExtensionality.
 | 
			
		||||
 | 
			
		||||
(** * Cumulative hierarchy *)
 | 
			
		||||
Inductive V : Type :=
 | 
			
		||||
@@ -205,6 +204,10 @@ Qed.
 | 
			
		||||
 | 
			
		||||
(** * Axioms *)
 | 
			
		||||
 | 
			
		||||
(** First, we define a class of set predicates: predicates that respect the equality on V *)
 | 
			
		||||
Class SetPredicate (ϕ : V → Prop) :=
 | 
			
		||||
  pred_proper :> Proper ((≡) ==> impl) ϕ.
 | 
			
		||||
 | 
			
		||||
(** Extensionality *)
 | 
			
		||||
Theorem CZF_extensionality (a b : V) :
 | 
			
		||||
  a ⊆ b ∧ b ⊆ a ↔ a ≡ b.
 | 
			
		||||
@@ -215,7 +218,7 @@ Proof.
 | 
			
		||||
Qed.
 | 
			
		||||
 | 
			
		||||
(** Paring *)
 | 
			
		||||
Lemma CZF_pairing (x y : V) :
 | 
			
		||||
Theorem CZF_pairing (x y : V) :
 | 
			
		||||
  forall (w : V), w ∈ ({[x; y]} : V)
 | 
			
		||||
                ↔ w ≡ x ∨ w ≡ y.
 | 
			
		||||
Proof.
 | 
			
		||||
@@ -230,13 +233,23 @@ Qed.
 | 
			
		||||
(* TODO: need big union operation *)
 | 
			
		||||
 | 
			
		||||
(** Empty set *)
 | 
			
		||||
Lemma CZF_empty :
 | 
			
		||||
Theorem CZF_empty :
 | 
			
		||||
  forall y, ¬ (y ∈ (∅ : V)).
 | 
			
		||||
Proof. intros ? [[] ?]. Qed.
 | 
			
		||||
 | 
			
		||||
(** Set Induction *)
 | 
			
		||||
Theorem CZF_induction ϕ `{SetPredicate ϕ} :
 | 
			
		||||
  (forall x, (forall y, y ∈ x → ϕ y) → ϕ x) → (forall x, ϕ x).
 | 
			
		||||
Proof.
 | 
			
		||||
  intros Hϕ x.
 | 
			
		||||
  induction x as [A f IH].
 | 
			
		||||
  apply Hϕ.
 | 
			
		||||
  intros y [a ->]. apply IH.
 | 
			
		||||
Qed.
 | 
			
		||||
 | 
			
		||||
(** Infinity *)
 | 
			
		||||
Definition suc (x : V) := x ∪ {[x]}.
 | 
			
		||||
Lemma CZF_infinity :
 | 
			
		||||
Theorem CZF_infinity :
 | 
			
		||||
  ∅ ∈ NN ∧ (forall y, y ∈ NN → suc y ∈ NN).
 | 
			
		||||
Proof.
 | 
			
		||||
  split.
 | 
			
		||||
@@ -254,9 +267,8 @@ Proof.
 | 
			
		||||
  intros [x ?]. exact (f x).
 | 
			
		||||
Defined.
 | 
			
		||||
 | 
			
		||||
Class SetPredicate (ϕ : V → Prop) :=
 | 
			
		||||
  pred_proper :> Proper ((≡) ==> impl) ϕ.
 | 
			
		||||
Lemma CZF_separation a ϕ `{SetPredicate ϕ} :
 | 
			
		||||
(* Note that we have non-restricted separation *)
 | 
			
		||||
Theorem CZF_separation a ϕ `{SetPredicate ϕ} :
 | 
			
		||||
  forall y, (y ∈ sep a ϕ ↔ y ∈ a ∧ ϕ y).
 | 
			
		||||
Proof.
 | 
			
		||||
  intros y. destruct a as [A f]. split.
 | 
			
		||||
@@ -266,3 +278,36 @@ Proof.
 | 
			
		||||
    rewrite Hx in Hϕ.
 | 
			
		||||
    exists (existT x Hϕ). assumption.
 | 
			
		||||
Qed.
 | 
			
		||||
 | 
			
		||||
(** Collection *)
 | 
			
		||||
(** Collection holds only if we use types-as-proposition
 | 
			
		||||
interpretation, by using Σ-types (landing in Type) instead of ∃
 | 
			
		||||
(landing in Prop). Curiously, the predicate ϕ doesn't have to be
 | 
			
		||||
proper. *)
 | 
			
		||||
Definition coll (a : V) (ϕ : V → V → Prop) :
 | 
			
		||||
  (forall (x : V), x ∈ a → { y | ϕ x y }) →
 | 
			
		||||
  V.
 | 
			
		||||
Proof.
 | 
			
		||||
  intros Hϕ.
 | 
			
		||||
  destruct a as [A f].
 | 
			
		||||
  refine (sup A _).
 | 
			
		||||
  intros x.
 | 
			
		||||
  assert (f x ∈ sup A f) as Hfx. { exists x; reflexivity. }
 | 
			
		||||
  exact (proj1_sig (Hϕ (f x) Hfx)).
 | 
			
		||||
Defined.
 | 
			
		||||
 | 
			
		||||
(* ∀a[∀x∈a ∃y φ(x,y) → ∃b∀x∈a ∃y∈b φ(x,y)]  *)
 | 
			
		||||
Theorem CZF_collection (a : V) (ϕ : V → V → Prop)
 | 
			
		||||
        `{Proper _ ((≡) ==> (≡) ==> (impl)) ϕ} :
 | 
			
		||||
  (forall (x : V), x ∈ a → { y | ϕ x y }) →
 | 
			
		||||
  exists (b : V), (forall (x : V), x ∈ a → exists y, y ∈ b ∧ ϕ x y ).
 | 
			
		||||
Proof.
 | 
			
		||||
  intros Hϕ.
 | 
			
		||||
  exists (coll a ϕ Hϕ). intros xx Hxx.
 | 
			
		||||
  destruct a as [A f].
 | 
			
		||||
  destruct Hxx as [x Hx]. simpl in *.
 | 
			
		||||
  set (Hϕ':=Hϕ (f x) (ex_intro (λ y, f x ≡ f y) x (reflexivity _))).
 | 
			
		||||
  exists (proj1_sig Hϕ'). split.
 | 
			
		||||
  2: { rewrite Hx. apply (proj2_sig Hϕ'). }
 | 
			
		||||
  exists x. cbn. reflexivity.
 | 
			
		||||
Qed.
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user