From ea05bc91fdb1003f4f9a418418ec7f6f2ab16f35 Mon Sep 17 00:00:00 2001 From: Dan Frumin Date: Mon, 21 Jan 2019 19:12:17 +0100 Subject: [PATCH] Separation axiom --- czf.v | 58 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 58 insertions(+) diff --git a/czf.v b/czf.v index 3eb2e4a..7fb2d99 100644 --- a/czf.v +++ b/czf.v @@ -196,3 +196,61 @@ Proof. destruct (HBA (g y) Hgy) as [x Hx]. exists x. symmetry. apply Hx. Qed. + +(** * Axioms *) + +(** Extensionality *) +(* ... *) + +(** Paring *) +Lemma CZF_pairing (x y : V) : + forall (w : V), w ∈ ({[x; y]} : V) + ↔ w ≡ x ∨ w ≡ y. +Proof. + intros w. split. + - intros [[?|?] ?]; eauto. + - intros [Hw|Hw]. + + exists (inl ()). eauto. + + exists (inr ()). eauto. +Qed. + +(** Union *) +(* TODO: need big union operation *) + +(** Empty set *) +Lemma CZF_empty : + forall y, ¬ (y ∈ (∅ : V)). +Proof. intros ? [[] ?]. Qed. + +(** Infinity *) +Definition suc (x : V) := x ∪ {[x]}. +Lemma CZF_infinity : + ∅ ∈ NN ∧ (forall y, y ∈ NN → suc y ∈ NN). +Proof. + split. + - exists 0. reflexivity. + - intros y [n Hn]. exists (S n). + unfold suc. rewrite Hn. + reflexivity. +Qed. + +(** Separation *) +Definition sep (a : V) (ϕ : V → Prop) : V. +Proof. + destruct a as [A f]. + refine (sup (sigT (λ (x:A), ϕ (f x))) _). + intros [x ?]. exact (f x). +Defined. + +Class SetPredicate (ϕ : V → Prop) := + pred_proper :> Proper ((≡) ==> impl) ϕ. +Lemma CZF_separation a ϕ `{SetPredicate ϕ} : + forall y, (y ∈ sep a ϕ ↔ y ∈ a ∧ ϕ y). +Proof. + intros y. destruct a as [A f]. split. + - intros [[x Hϕ] Hx]. simpl in *. + rewrite Hx. split; [exists x|]; eauto. + - intros [[x Hx] Hϕ]. simpl in *. + rewrite Hx in Hϕ. + exists (existT x Hϕ). assumption. +Qed.