diff --git a/Hoare.v b/Hoare.v
index 4ad5cbe..ddce5bb 100644
--- a/Hoare.v
+++ b/Hoare.v
@@ -1,10 +1,11 @@
+Require Import Coq.Program.Equality.
+From stdpp Require Import base tactics.
Require Import ImpSimpl.
-Require Import base tactics. (* For typeclasses; obtained from *)
(** * Basic definition *)
(** (From ImpSimpl.v) We assume big-step semantics [exec v c v'] representing that [c], if
-executed in a state [v], results in the state [v'].
+executed in a state [v], results in the state [v'].
In this semantics the state is just a valuation of variables. We
assume that we can evaluate a boolean expression [be] in a state [v]
@@ -35,7 +36,7 @@ Proof. intros P Q R HPQ HQR v. intuition. Qed.
postcondition) and a program [c], we write [hoare_interp P c Q v] if,
supposing the precondition [P] holds at the state [v], and [c]
evaluates to state [v'] from state [v], we can show that the
-postcondition [Q] holds at the state [v'].
+postcondition [Q] holds at the state [v'].
If this holds for all states [v], we say that the triple (P, Q, c) is
_valid_, written as [hoare_valid P c Q].
@@ -56,7 +57,7 @@ and we use the notation [{{P}} c {{Q}}] as a shorthand for
Inductive hoare_triple : assertion -> cmd -> assertion -> Prop :=
| HtSkip : forall P, hoare_triple P Skip P
| HtAssign : forall (P : assertion) x e,
- hoare_triple P (Assign x e)
+ hoare_triple P (Assign x e)
(fun v => exists v', P v' /\ v = (<[x := eval e v']>v'))
| HtSeq : forall (P Q R : assertion) c1 c2,
hoare_triple P c1 Q
@@ -76,18 +77,18 @@ P' ==> P {P} c {Q} Q ==> Q'
{P'} c {Q'}
>>
-*)
+*)
| HtConsequence : forall (P Q P' Q' : assertion) c,
hoare_triple P c Q
-> P' ==> P -> Q ==> Q'
-> hoare_triple P' c Q'
-(**
+(**
<<
∀a {P(a)} c {Q}
-----------------
{∃a.P(a)} c {Q}
>>
-*)
+*)
| HtExists : forall A (P : A -> assertion) (Q: assertion) c,
(forall (a:A), hoare_triple (P a) c (Q))
-> hoare_triple (fun v => exists a, P a v) c Q
@@ -145,7 +146,7 @@ Proof.
try (inversion E; subst; by eauto).
intro.
- eapply hoare_triple_big_step_while; eauto.
+ eapply hoare_triple_big_step_while; eauto.
intros [a HP]. eapply H0; eassumption.
Qed.
@@ -154,7 +155,7 @@ Qed.
(** * (Syntactic) Weakest precondition *)
(** Syntactic definition of a weakest precondition *)
-Fixpoint wpl (c : cmd) (Q : assertion) : assertion :=
+Fixpoint wpl (c : cmd) (Q : assertion) : assertion :=
match c with
| Skip => Q
| Assign x E => fun v => Q (<[ x := eval E v ]>v)
@@ -183,12 +184,12 @@ Proof.
inversion E; subst; rewrite H4; intro wplHods.
eapply IHs1; eauto.
- eapply IHs2; eauto.
+ eapply IHs2; eauto.
dependent induction E; intros [Inv [L1 L2]]. eapply L2; eauto.
- assert (Inv v2) as Inv_v2 by (eapply IHs; eauto; eapply L2; eauto).
+ assert (Inv v2) as Inv_v2 by (eapply IHs; eauto; eapply L2; eauto).
assert (wpl (While_ be s) Q v2) as RealInv by (simpl;eauto).
- eapply IHE2; eauto.
+ eapply IHE2; eauto.
Qed.
Hint Resolve ExSkip ExAssign ExSeq ExIfTrue ExIfFalse ExWhileFalse ExWhileTrue.
@@ -207,7 +208,7 @@ Theorem wpl_complete_sem (c : cmd) (P Q : assertion) :
Proof.
generalize dependent Q. generalize dependent P.
induction c; simpl; intros P Q v HT Pv. intuition; by eauto. unfold hoare_interp in HT.
- try (intuition; by eauto).
+ try (intuition; by eauto).
(** Case [c = c1;c2]. By the first induction hypothesis, to show that [wpl c1 (wpl c2 Q)] holds it suffices to show that [{P} c1 {wpl c2 Q}] holds. *)
eapply IHc1 with (P:=P); eauto.
@@ -228,14 +229,14 @@ hypothesis. *)
(* TODO: pull this out in a separate lemma *)
exists (WeP (While_ be c) Q).
split. unfold WeP; intuition.
- intro e. split.
- intros [Cond W]. unfold WeP in W.
+ intro e. split.
+ intros [Cond W]. unfold WeP in W.
eapply IHc with (WeP (While_ be c) Q). intros e' ? ?. intros e'' ?.
- eapply W. eapply ExWhileTrue with e'; eassumption.
+ eapply W. eapply ExWhileTrue with e'; eassumption.
eassumption.
- intros [Cond W]. unfold WeP in W.
- eapply W. eapply ExWhileFalse.
+ intros [Cond W]. unfold WeP in W.
+ eapply W. eapply ExWhileFalse.
eassumption.
Qed.
@@ -255,7 +256,7 @@ Qed.
Theorem wpl_entailment' (c : cmd) (P Q : assertion) :
forall v, (P v -> wpl c Q v) -> hoare_interp P c Q v.
-Proof.
+Proof.
intros v H v' E Pv.
eapply wpl_sound_sem; eauto.
Qed.
@@ -267,35 +268,35 @@ Theorem wpl_mon (c : cmd) (Q Q' : assertion) :
Proof. generalize dependent Q. generalize dependent Q'.
induction c; simpl; intros Q' Q HQ v; intuition.
- eapply IHc1; eauto.
+ eapply IHc1; eauto.
destruct (beval be v); intuition. eapply IHc1; eauto. eapply IHc2; eauto.
-
+
destruct H as [I [HI HII]].
exists I; intuition; eauto. eapply IHc. reflexivity. eapply HII; eauto.
eapply HQ. eapply HII; eauto.
Qed.
(** ** Syntactic soundness of [wpl] and relative completeness of the Hoare logic *)
-
+
(** Finally, we can prove the syntactic soundness of [wpl] *)
Theorem wpl_soundness_synt (s : cmd) (Q : assertion) :
{{ wpl s Q }} s {{Q}}.
Proof.
generalize dependent Q. dependent induction s;
try (simpl; intuition; by ht1); intro Q.
- - simpl. eapply HtStrengthenPost. eapply HtAssign.
+ - simpl. eapply HtStrengthenPost. eapply HtAssign.
intros v [v' [S1 S2]]. rewrite S2; assumption.
- - simpl. eapply HtStrengthenPost.
- eapply HtIf; eapply HtWeakenPre.
+ - simpl. eapply HtStrengthenPost.
+ eapply HtIf; eapply HtWeakenPre.
eapply IHs1. intros v [WP C];
rewrite C in *; eassumption.
eapply IHs2. intros v [WP C];
rewrite C in *; eassumption.
intro v. intuition.
-
- - simpl. eapply HtExists; intro I.
+
+ - simpl. eapply HtExists; intro I.
set (Istrong:=(fun v => I v /\ (∀ x : valuation,
((beval be x = true) ∧ I x → wpl s I x)
∧ ((beval be x = false) ∧ I x → Q x)))).
@@ -313,8 +314,8 @@ Proof.
unfold Istrong;
intros v [[Iv IU] beq]. split. eapply IU; eauto. assumption.
- intros v [HWP IU].
- generalize v HWP; clear v HWP.
+ intros v [HWP IU].
+ generalize v HWP; clear v HWP.
eapply wpl_mon. intros v' HI. unfold Istrong; intuition.
}
{
diff --git a/ImpSimpl.v b/ImpSimpl.v
index 92c2efc..25e5a3a 100644
--- a/ImpSimpl.v
+++ b/ImpSimpl.v
@@ -1,10 +1,6 @@
(** This file is a slight modification of ImpSimpl.v from Adam
Chilipala's FRAP: *)
-
-Require Import String.
-
-(** We use Robbert's prelude from *)
-Require Import stringmap natmap.
+From stdpp Require Import stringmap natmap.
(** Here's some appropriate syntax for expressions (side-effect-free) of a simple imperative language with a mutable memory. *)
Inductive exp :=
@@ -86,14 +82,14 @@ Infix "*" := Mult : cmd_scope.
Infix "=" := Equal : cmd_scope.
Infix "<" := Less : cmd_scope.
Definition set (dst src : exp) : cmd :=
- match dst with
+ match dst with
| Var dst' => Assign dst' src
| _ => Assign "Bad LHS" 0
end.
Infix "<-" := set (no associativity, at level 70) : cmd_scope.
-Infix ";;" := Seq (right associativity, at level 75) : cmd_scope.
+Infix ";;;" := Seq (right associativity, at level 70) : cmd_scope.
Notation "'when' b 'then' then_ 'else' else_ 'done'" := (If_ b then_ else_) (at level 75, b at level 0).
-Notation "{{ I }} 'while' b 'loop' body 'done'" := (While_ b body) (at level 75).
+Notation "'while' b 'loop' body 'done'" := (While_ b body) (at level 75).
Delimit Scope cmd_scope with cmd.
Infix "+" := plus : reset_scope.
diff --git a/Makefile b/Makefile
index 26c0fde..29796ea 100644
--- a/Makefile
+++ b/Makefile
@@ -1,12 +1,12 @@
CH2O=/Users/dan/projects/ch2o-new/
ImpSimpl.vo: ImpSimpl.v
- coqc -R $(CH2O) ch2o ImpSimpl.v
+ coqc ImpSimpl.v
Hoare.vo: Hoare.v ImpSimpl.vo
- coqc -R $(CH2O) ch2o Hoare.v
+ coqc Hoare.v
all: Hoare.vo
doc: ImpSimpl.vo Hoare.vo
- coqdoc -R $(CH2O) ch2o ImpSimpl.v Hoare.v
+ coqdoc ImpSimpl.v Hoare.v
diff --git a/README b/README
new file mode 100644
index 0000000..29e7ec3
--- /dev/null
+++ b/README
@@ -0,0 +1,6 @@
+A simple formulation of Hoare logic for a WHILE-language, with a proof of /relative completeness/:
+
+If a triple { P } s { Q } is valid in the model, then it is derivable
+using the rules in Hoare.v (see the inductive type `hoare_triple`).
+
+Requires std++: .