hoare-completeness/Hoare.v

334 lines
11 KiB
Coq

Require Import Coq.Program.Equality.
From stdpp Require Import base tactics.
Require Import ImpSimpl.
(** * Basic definition *)
(** (From ImpSimpl.v) We assume big-step semantics [exec v c v'] representing that [c], if
executed in a state [v], results in the state [v'].
In this semantics the state is just a valuation of variables. We
assume that we can evaluate a boolean expression [be] in a state [v]
as [beval be v]; we also assume that we can evaluate an arithmetic
expression [ae] in a state [v] as [eval ae v]. *)
(** An assertion in our logic is going to be a predicate on program
state, i.e. on valuations. *)
Definition assertion := valuation -> Prop.
(** We specify the entailment relation on assertions: [P ==> Q] if [P v]
implies [Q v] for all states [v]. *)
Definition himpl : assertion -> assertion -> Prop := fun P Q =>
forall (v : valuation), P v -> Q v.
Infix "==>" := himpl.
(** It is easily seen that this relation is reflexive and transitive *)
Instance: Reflexive himpl.
Proof. intros P v. intuition. Qed.
Instance: Transitive himpl.
Proof. intros P Q R HPQ HQR v. intuition. Qed.
(** Given an assertion [P] (the precondition), an assertion [Q] (the
postcondition) and a program [c], we write [hoare_interp P c Q v] if,
supposing the precondition [P] holds at the state [v], and [c]
evaluates to state [v'] from state [v], we can show that the
postcondition [Q] holds at the state [v'].
If this holds for all states [v], we say that the triple (P, Q, c) is
_valid_, written as [hoare_valid P c Q].
Such a triple (P, Q, c) is called a _Hoare triple_ and is usually
denoted as [{P} c {Q}]. We will reserve similar notation for Hoare
triples that are _derivable_ in Hoare logic in the next section
*)
Definition hoare_interp (P : assertion) (c : cmd) (Q: assertion) (v : valuation) := forall v', exec v c v' -> P v -> Q v'.
Definition hoare_valid P c Q := forall v, hoare_interp P c Q v.
(** * Derivable Hoare triples *)
(** The type of deriavable Hoare triples is denoted as [hoare_triple]
and we use the notation [{{P}} c {{Q}}] as a shorthand for
[hoare_triple P c Q].*)
Inductive hoare_triple : assertion -> cmd -> assertion -> Prop :=
| HtSkip : forall P, hoare_triple P Skip P
| HtAssign : forall (P : assertion) x e,
hoare_triple P (Assign x e)
(fun v => exists v', P v' /\ v = (<[x := eval e v']>v'))
| HtSeq : forall (P Q R : assertion) c1 c2,
hoare_triple P c1 Q
-> hoare_triple Q c2 R
-> hoare_triple P (Seq c1 c2) R
| HtIf : forall (P Q1 Q2 : assertion) b c1 c2,
hoare_triple (fun v => P v /\ beval b v = true) c1 Q1
-> hoare_triple (fun v => P v /\ beval b v = false) c2 Q2
-> hoare_triple P (If_ b c1 c2) (fun v => Q1 v \/ Q2 v)
| HtWhileInv : forall (I : assertion) b c,
hoare_triple (fun v => I v /\ beval b v = true) c I
-> hoare_triple I (While_ b c) (fun v => I v /\ beval b v = false)
(**
<<
P' ==> P {P} c {Q} Q ==> Q'
----------------------------------
{P'} c {Q'}
>>
*)
| HtConsequence : forall (P Q P' Q' : assertion) c,
hoare_triple P c Q
-> P' ==> P -> Q ==> Q'
-> hoare_triple P' c Q'
(**
<<
∀a {P(a)} c {Q}
-----------------
{∃a.P(a)} c {Q}
>>
*)
| HtExists : forall A (P : A -> assertion) (Q: assertion) c,
(forall (a:A), hoare_triple (P a) c (Q))
-> hoare_triple (fun v => exists a, P a v) c Q
.
(* And here's the classic notation for Hoare triples. *)
Notation "{{ P }} c {{ Q }}" := (hoare_triple P c%cmd Q) (at level 90, c at next level).
(* Special case of consequence: keeping the precondition; only changing the
* postcondition. *)
Lemma HtStrengthenPost : forall (P Q Q' : assertion) c,
hoare_triple P c Q
-> Q ==> Q'
-> hoare_triple P c Q'.
Proof.
intros; eapply HtConsequence; eauto using reflexivity.
(** TODO : eauto doesn't use [reflexivity]? **)
Qed.
Lemma HtWeakenPre : forall (P P' Q : assertion) c,
hoare_triple P c Q
-> P' ==> P
-> hoare_triple P' c Q.
Proof.
intros; eapply HtConsequence; eauto using reflexivity.
(** TODO : eauto doesn't use [reflexivity]? **)
Qed.
Ltac ht1 := apply HtSkip || apply HtAssign || eapply HtSeq
|| eapply HtIf || eapply HtWhileInv
|| eapply HtStrengthenPost.
(** * Soundness of Hoare logic rules. This is mostly taken from FRAP. *)
Lemma hoare_triple_big_step_while: forall (I : assertion) b c,
(forall v v', exec v c v'
-> I v
-> beval b v = true
-> I v')
-> forall v v', exec v (While_ b c) v'
-> I v
-> I v' /\ beval b v' = false.
Proof.
intros I b c P v v'.
intro. dependent induction H; eauto.
Qed.
Theorem hoare_triple_sound : forall pre c post,
hoare_triple pre c post
-> hoare_valid pre c post.
Proof.
unfold hoare_valid, hoare_interp.
intros pre c post H.
dependent induction H; intros v v' E;
try (inversion E; subst; by eauto).
intro.
eapply hoare_triple_big_step_while; eauto.
intros [a HP]. eapply H0; eassumption.
Qed.
(** * (Syntactic) Weakest precondition *)
(** Syntactic definition of a weakest precondition *)
Fixpoint wpl (c : cmd) (Q : assertion) : assertion :=
match c with
| Skip => Q
| Assign x E => fun v => Q (<[ x := eval E v ]>v)
| Seq c1 c2 => wpl c1 (wpl c2 Q)
| If_ be th el => fun v => if beval be v
then (wpl th Q) v
else (wpl el Q) v
| While_ be body =>
fun v => exists Inv, Inv v /\
(forall x, ((beval be x = true /\ Inv x) -> wpl body Inv x)
/\
((beval be x = false /\ Inv x) -> Q x))
end.
(** ** Semantic soundness & completeness of [wpl] *)
(** [wpl] is sound w.r.t. valuation semantics, this establishes that
[wpl s Q] is in fact a precondition *)
Theorem wpl_sound_sem (s : cmd) (Q : assertion) :
hoare_valid (wpl s Q) s Q.
Proof.
generalize dependent Q.
induction s; simpl; intuition; intros v v' E; try (inversion E; subst; by intuition).
inversion E; subst. intro wplHolds. eapply IHs2; eauto. eapply IHs1; eauto.
inversion E; subst; rewrite H4; intro wplHods.
eapply IHs1; eauto.
eapply IHs2; eauto.
dependent induction E; intros [Inv [L1 L2]]. eapply L2; eauto.
assert (Inv v2) as Inv_v2 by (eapply IHs; eauto; eapply L2; eauto).
assert (wpl (While_ be s) Q v2) as RealInv by (simpl;eauto).
eapply IHE2; eauto.
Qed.
Hint Resolve ExSkip ExAssign ExSeq ExIfTrue ExIfFalse ExWhileFalse ExWhileTrue.
(** An auxiliary definition. This is "the real" weakest precondition,
or a "semantic" weakest precondition. *)
Definition WeP (c : cmd) (Q: assertion) : assertion :=
fun v => forall v', exec v c v' -> Q v'.
(** We can prove that [wpl] is complete in the following sense: *)
Theorem wpl_complete_sem (c : cmd) (P Q : assertion) :
forall v, hoare_interp P c Q v
-> P v -> wpl c Q v.
Proof.
generalize dependent Q. generalize dependent P.
induction c; simpl; intros P Q v HT Pv. intuition; by eauto. unfold hoare_interp in HT.
try (intuition; by eauto).
(** Case [c = c1;c2]. By the first induction hypothesis, to show that [wpl c1 (wpl c2 Q)] holds it suffices to show that [{P} c1 {wpl c2 Q}] holds. *)
eapply IHc1 with (P:=P); eauto.
intros v' E _.
(** This reduces to showing that [wpl c2 Q] holds after the
execution of [c1]. This can be obtained by applying the second induction
hypothesis. *)
eapply IHc2; try eassumption.
intros v'' E2 Pv'. eapply HT; eauto.
(** Case [c = if be then c1 else c2]. In this case we reason by case analysis: whether [be] is true in the state [v]. If it evaluates to [true] then we use the first induction hypothesis, otherwise use the second one. *)
remember (beval be v) as b; destruct b;
unfold hoare_interp in HT.
eapply IHc1; eauto. intros ???. eapply HT; eauto.
eapply IHc2; eauto. intros ???. eapply HT; eauto.
(** Case [c = while be do c]. In this case we pick the invariant to be the semantic weakest precondition [WeP]. *)
(* TODO: pull this out in a separate lemma *)
exists (WeP (While_ be c) Q).
split. unfold WeP; intuition.
intro e. split.
intros [Cond W]. unfold WeP in W.
eapply IHc with (WeP (While_ be c) Q). intros e' ? ?. intros e'' ?.
eapply W. eapply ExWhileTrue with e'; eassumption.
eassumption.
intros [Cond W]. unfold WeP in W.
eapply W. eapply ExWhileFalse.
eassumption.
Qed.
Theorem wpl_complete_sem' (c : cmd) (P Q : assertion) :
hoare_valid P c Q
-> (P ==> wpl c Q).
Proof.
intros H v Pv. eapply wpl_complete_sem; eauto.
Qed.
Theorem wpl_entailment (c : cmd) (P Q : assertion) :
(P ==> wpl c Q) -> (hoare_valid P c Q).
Proof.
intros H v v' E Pv.
eapply wpl_sound_sem; eauto.
Qed.
Theorem wpl_entailment' (c : cmd) (P Q : assertion) :
forall v, (P v -> wpl c Q v) -> hoare_interp P c Q v.
Proof.
intros v H v' E Pv.
eapply wpl_sound_sem; eauto.
Qed.
(** An auxiliary lemma: wpl is monotone in the second arg *)
Theorem wpl_mon (c : cmd) (Q Q' : assertion) :
Q ==> Q' ->
wpl c Q ==> wpl c Q'.
Proof. generalize dependent Q. generalize dependent Q'.
induction c; simpl; intros Q' Q HQ v; intuition.
eapply IHc1; eauto.
destruct (beval be v); intuition. eapply IHc1; eauto. eapply IHc2; eauto.
destruct H as [I [HI HII]].
exists I; intuition; eauto. eapply IHc. reflexivity. eapply HII; eauto.
eapply HQ. eapply HII; eauto.
Qed.
(** ** Syntactic soundness of [wpl] and relative completeness of the Hoare logic *)
(** Finally, we can prove the syntactic soundness of [wpl] *)
Theorem wpl_soundness_synt (s : cmd) (Q : assertion) :
{{ wpl s Q }} s {{Q}}.
Proof.
generalize dependent Q. dependent induction s;
try (simpl; intuition; by ht1); intro Q.
- simpl. eapply HtStrengthenPost. eapply HtAssign.
intros v [v' [S1 S2]]. rewrite S2; assumption.
- simpl. eapply HtStrengthenPost.
eapply HtIf; eapply HtWeakenPre.
eapply IHs1. intros v [WP C];
rewrite C in *; eassumption.
eapply IHs2. intros v [WP C];
rewrite C in *; eassumption.
intro v. intuition.
- simpl. eapply HtExists; intro I.
set (Istrong:=(fun v => I v /\ ( x : valuation,
((beval be x = true) I x wpl s I x)
((beval be x = false) I x Q x)))).
eapply HtStrengthenPost.
{ eapply HtWhileInv with (I:=Istrong).
apply HtWeakenPre with (wpl s Istrong).
eapply IHs.
(* this should be (cut (wpl s I)) *)
transitivity (fun v =>
wpl s I v /\ ( x : valuation,
((beval be x = true) I x wpl s I x)
((beval be x = false) I x Q x))).
unfold Istrong;
intros v [[Iv IU] beq]. split. eapply IU; eauto. assumption.
intros v [HWP IU].
generalize v HWP; clear v HWP.
eapply wpl_mon. intros v' HI. unfold Istrong; intuition.
}
{
unfold Istrong; intros v [[Iv UI] Heq].
apply UI; auto.
}
Qed.
(** The syntactic soundness of [wpl] + consequence rule ==> relative completeness of Hoare rules *)
Theorem completeness P c Q : hoare_valid P c Q -> hoare_triple P c Q.
Proof. intro HV.
eapply HtWeakenPre.
apply wpl_soundness_synt.
apply wpl_complete_sem'. assumption.
Qed.