This commit is contained in:
Dan Frumin 2019-06-12 18:29:21 +02:00
parent 8601f7c673
commit 4dd4e4f383
9 changed files with 144 additions and 128 deletions

View File

@ -1,7 +1,8 @@
Require Import Rushby.
From stdpp Require Import list relations collections fin_collections.
(** Instantiation of the intransitive interference with an "array machine" *)
Require Import NI.Rushby.
From stdpp Require Import list relations gmap sets fin_sets.
Module ArrayMachine <: Mealy.
Module ArrayMachine.
Definition state := nat -> nat.
Inductive command :=
@ -23,39 +24,51 @@ Definition preform (s : state) (a : action) : state * out :=
Definition step s a := fst (preform s a).
Definition output s a := snd (preform s a).
Definition initial (x : nat) := 0.
End ArrayMachine.
End ArrayMachine.
Import ArrayMachine.
Module M := Rushby.Rushby ArrayMachine.
Import M.
Instance ArrayMealyMachine : Mealy state action out :=
{ initial := initial;
step := step;
output := output }.
Eval compute in (do_actions [Write 1 1] 2).
(** ===> 0 *)
Definition domain := action.
Definition nameA := nat.
Definition valA := nat.
Definition observeA (u : domain) : FinSet nameA :=
Definition observeA (u : domain) : gset nameA :=
match u with
| Read i => {[ i ]}
| Write _ _ =>
end.
Definition alterA (u : domain) : FinSet valA :=
Definition alterA (u : domain) : gset valA :=
match u with
| Read _ =>
| Write i _ => {[ i ]}
end.
Instance domain_dec : forall (u v : domain), Decision (u = v).
Proof. intros.
Instance domain_dec : EqDecision domain.
Proof. intros u v.
unfold Decision.
repeat (decide equality).
Defined.
Instance arraymachine_ss : StructuredState domain :=
Instance domain_countable : Countable domain.
refine (inj_countable' (λ x, match x with
| Write i1 i2 => (inl (i1, i2))
| Read i => (inr i)
end) (λ x, match x with
| inl (i1, i2) => Write i1 i2
| inr i => Read i
end) _); by intros [].
Defined.
Instance arraymachine_ss : StructuredState domain :=
{ name := nameA; value := valA; contents s n := s n
; observe := observeA; alter := alterA }.
; observe := observeA; alter := alterA }.
Definition interference (u v : domain) :=
(exists (n : nameA), n alterA u n observeA v).
@ -64,59 +77,64 @@ Inductive interferenceR : relation domain :=
| interference_refl : forall (u : domain), interferenceR u u
| interference_step : forall (u v: domain), interference u v -> interferenceR u v.
Instance policy_ss : Policy domain :=
Instance: Set_ nameA (gset nameA).
apply _.
Qed.
Instance policy_ss : Policy domain :=
{ policy := interferenceR
; dom := fun (a : action) => (a : domain) }.
Proof.
intros. unfold Decision.
destruct v as [i j | i]; destruct w as [m n | m].
- destruct (decide (i = m)). destruct (decide (j = n)); subst; auto.
left. constructor.
right. intro I. inversion I; subst. apply n0. auto.
inversion H. unfold observeA in *. destruct H0 as [HH HHH].
apply (not_elem_of_empty x); assumption.
right. intro. inversion H; subst. apply n0. auto.
inversion H0. unfold alterA, observeA in *. destruct H1.
apply (not_elem_of_empty x); assumption.
- destruct (decide (i = m)); subst. left. right. unfold interference.
simpl. exists m. split; apply elem_of_singleton; auto.
right. intro. inversion H; subst. inversion H0. simpl in H1.
destruct H1. apply elem_of_singleton in H1; apply elem_of_singleton in H2. subst. apply n;auto.
- right. intro. inversion H;subst. inversion H0; subst.
simpl in H1; inversion H1. apply (not_elem_of_empty x); assumption.
- destruct (decide (i = m)); subst.
left. constructor.
right. intro. inversion H; subst. auto.
inversion H0; subst. simpl in H1; inversion H1. eapply not_elem_of_empty. eassumption.
- intros v w.
destruct v as [i j | i]; destruct w as [m n | m].
+ destruct (decide (i = m)). destruct (decide (j = n)); subst; auto.
left. constructor.
right. intro I. inversion I; subst. apply n0. auto.
inversion H. unfold observeA in *. destruct H0 as [HH HHH].
apply (not_elem_of_empty x HHH).
right. intro. inversion H; subst. apply n0. auto.
inversion H0. unfold alterA, observeA in *. destruct H1 as [HH HHH].
apply (not_elem_of_empty x HHH).
+ destruct (decide (i = m)); subst. left. right. unfold interference.
simpl. exists m. split; apply elem_of_singleton; auto.
right. intro. inversion H; subst. inversion H0. simpl in H1.
destruct H1. apply elem_of_singleton in H1; apply elem_of_singleton in H2. subst. apply n;auto.
+ right. intro. inversion H;subst. inversion H0; subst.
simpl in H1; inversion H1. eapply (not_elem_of_empty x); eassumption.
+ destruct (decide (i = m)); subst.
left. constructor.
right. intro. inversion H; subst. auto.
inversion H0; subst. simpl in H1; inversion H1.
eapply (not_elem_of_empty x); eassumption.
- intro u. constructor.
Defined.
Check RefMonAssumptions.
Instance rma_yay : RefMonAssumptions.
Proof. split; simpl; unfold RMA_partition; intros;
unfold contents in *; simpl in H8.
unfold output.
unfold preform. destruct a as [i j | i]; simpl in *. reflexivity.
apply H8. apply elem_of_singleton. reflexivity.
unfold step, preform. destruct a as [i j | i]. simpl in *.
destruct (decide (i = n)); subst; unfold extendS; simpl.
replace (beq_nat n n) with true; auto. apply beq_nat_refl.
destruct H9.
unfold step in H9; simpl in H9. unfold extendS in H9; simpl in H9.
replace (beq_nat n i) with false in *; auto.
congruence. SearchAbout beq_nat false. symmetry. apply beq_nat_false_iff. omega.
unfold step in H9; simpl in H9. unfold extendS in H9; simpl in H9.
replace (beq_nat n i) with false in *; auto.
congruence. symmetry. apply beq_nat_false_iff. omega.
Proof.
split; simpl; unfold RMA_partition.
- intros a s t Hst;
unfold contents in *; simpl in *.
unfold output.
unfold preform. destruct a as [i j | i]; simpl in *. reflexivity.
apply Hst. eapply elem_of_singleton. reflexivity.
- intros a s t n Hst Hn.
unfold step, preform. destruct a as [i j | i]. simpl in *.
destruct (decide (i = n)); subst; unfold extendS; simpl.
replace (beq_nat n n) with true; auto. apply beq_nat_refl.
destruct Hn as [Hn|Hn].
unfold step in Hn; simpl in Hn. unfold extendS in Hn; simpl in Hn.
replace (beq_nat n i) with false in *; auto.
congruence. symmetry. apply beq_nat_false_iff. omega.
unfold step in Hn; simpl in Hn. unfold extendS in Hn; simpl in Hn.
replace (beq_nat n i) with false in *; auto.
congruence. symmetry. apply beq_nat_false_iff. omega.
simpl. destruct H9; unfold step, preform in H9; simpl in H9;
simpl. destruct Hn as [Hn|Hn]; unfold step, preform in Hn; simpl in Hn;
congruence.
unfold step, preform in H8; simpl in H8. destruct a; simpl in *.
unfold extendS in H8. destruct (decide (n = n0)); subst.
apply elem_of_singleton; auto. replace (beq_nat n n0) with false in *; try (congruence). symmetry. apply beq_nat_false_iff. assumption.
- intros a s n Hst.
unfold step, preform in Hst; simpl in Hst. destruct a; simpl in *.
unfold extendS in Hst. destruct (decide (n = n0)); subst.
apply elem_of_singleton; auto. replace (beq_nat n n0) with false in *; try (congruence). symmetry. apply beq_nat_false_iff. assumption.
congruence.
Defined.
@ -125,4 +143,3 @@ Proof.
apply rma_secure_intransitive.
intros u v n A1 A2. simpl. right. firstorder.
Qed.

136
Rushby.v
View File

@ -1,24 +1,11 @@
(** Formalisation of "Noninterference, Transitivity, and Channel-Control Security Policies" by J. Rushby
(** Formalisation of "Noninterference, Transitivity, and Channel-Control Security Policies" by J. Rushby
www.csl.sri.com/papers/csl-92-2/
*)
(** printing -> #→# *)
(** printing (policy a b) #a ⇝ b# *)
From stdpp Require Import list relations collections fin_collections.
Parameter FinSet : Type -> Type.
(** begin hide **)
Context `{forall A, ElemOf A (FinSet A)}.
Context `{forall A, Empty (FinSet A)}.
Context `{forall A, Singleton A (FinSet A)}.
Context `{forall A, Union (FinSet A)}.
Context `{forall A, Intersection (FinSet A)}.
Context `{forall A, Difference (FinSet A)}.
Context `{forall A, Elements A (FinSet A)}.
Context `{forall A, Collection A (FinSet A)}.
(* TODO: i wrote this line down so that there is a Collection -> SimpleCollection -> JoinSemiLattice instance for FinSet; how come this is not automatically picked up by the next assumption? *)
Context `{forall A (H : EqDecision A), FinCollection A (FinSet A)}.
(** end hide **)
From stdpp Require Import list relations gmap sets fin_sets.
(** * Mealy machines *)
@ -46,10 +33,10 @@ Fixpoint run `{Mealy state action out} (s : state) (ls : list action) : state :=
Definition do_actions `{Mealy state action out} : list action -> state := run initial.
(** The [test] function runs the required list of actions and examines the output of the resulting state on a specified action. *)
Definition test `{Mealy state action out} (ls : list action) : action -> out := output (do_actions ls).
Definition test `{Mealy state action out} (ls : list action) : action -> out := output (do_actions ls).
Section Rushby.
(** We assume for the rest of the formalisation that we have a Mealy
machine [M]. Thus, we parameterize our main development module by a machine [M]. *)
@ -73,6 +60,7 @@ Class Policy (domain : Type) := {
instances. *)
domain_dec :> EqDecision domain;
domain_countable :> Countable domain;
policy :> relation domain;
policy_dec :> RelDecision policy;
policy_refl :> Reflexive policy
@ -83,7 +71,7 @@ Delimit Scope policy_scope with P.
Open Scope policy_scope.
Infix "" := policy (at level 70) : policy_scope.
(** Quoting Rushby:
(** Quoting Rushby:
<<
We wish to define security in terms of information flow, so the
@ -136,10 +124,10 @@ Section view_partitions.
(** Formally, a view partition is an assignment of an equivalence
relation [{u}] for every domain [u] *)
Class ViewPartition (domain : Type) := {
view_partition :> domain -> relation state;
view_partition_is_equiv :> forall v, Equivalence (view_partition v)
view_partition_is_equiv :> forall v, Equivalence (view_partition v);
}.
Notation "S ≈{ U } T" := (view_partition U S T)
@ -149,7 +137,7 @@ Open Scope policy_scope.
states [s, t] that are indistinguishable w.r.t. the domain [dom a],
the output of the system [output s a] is the same as [output t a] *)
Class OutputConsistent `{P : Policy domain} `(ViewPartition domain) :=
Class OutputConsistent `{P : Policy domain} `(ViewPartition domain) :=
output_consistent : (forall a s t, s {dom a} t -> output s a = output t a).
(** Our first lemma states that if we have a view partitioned system
@ -195,15 +183,15 @@ Theorem unwinding `{P: Policy domain} `{VP: ViewPartition domain} `{@OutputConsi
Proof.
intros LRP SC. apply output_consist_security.
assert (forall ls u s t, view_partition u s t -> view_partition u (run s ls) (run t (purge ls u))) as General. (* TODO: a simple generalize would not suffice, because we actually need the s ≈ t assumption *)
induction ls; simpl; auto.
induction ls; simpl; auto.
intros u s t HI.
destruct (decide (policy (dom a) u)).
(* DOESNT WORK (Lexer) : destruct (decide ((dom a) ⇝ u)). *)
(** Case [(dom a) ~> u] *)
(** Case [(dom a) ~> u] *)
apply IHls. apply SC; assumption.
(** Case [(dom a) ~/> u] *)
apply IHls.
transitivity s. symmetry. unfold locally_respects_policy in LRP. apply LRP; assumption. assumption.
(** Case [(dom a) ~/> u] *)
apply IHls.
transitivity s. symmetry. unfold locally_respects_policy in LRP. apply LRP; assumption. assumption.
unfold do_actions. intros ls u. apply General. reflexivity.
Qed.
@ -213,7 +201,7 @@ End view_partitions.
Section ACI.
(** In this section we consider a formalisation of the access control mechansisms.
(** In this section we consider a formalisation of the access control mechansisms.
We say that the machine has _structured state_ if we have a collection
of [name]s and [value]s (the latter being decidable), and some sort of
@ -227,8 +215,10 @@ Class StructuredState (domain : Type) := {
value : Type;
contents : state -> name -> value;
value_dec :> EqDecision value;
observe : domain -> FinSet name;
alter : domain -> FinSet name
name_dec :> EqDecision name;
name_countable :> Countable name;
observe : domain -> gset name;
alter : domain -> gset name
}.
(** This induces the view partition relation as follows: two state [s]
@ -240,13 +230,15 @@ Definition RMA_partition `{@StructuredState domain} (u : domain) s t := (forall
Transparent RMA_partition.
Instance RMA `{@StructuredState domain} : ViewPartition domain := { view_partition := RMA_partition }.
Instance RMA `{!StructuredState domain}
`{!EqDecision domain, !Countable domain}
: ViewPartition domain := { view_partition := RMA_partition }.
(* begin hide *)
intro u. split; unfold RMA_partition.
(* Reflexivity *) unfold Reflexive. auto.
(* Symmetry *) unfold Symmetric. intros x y Sy.
intro u. split; try apply _; unfold RMA_partition.
(* Reflexivity *) - unfold Reflexive. auto.
(* Symmetry *) - unfold Symmetric. intros x y Sy.
symmetry. apply Sy. assumption.
(* Transitivity *) unfold Transitive. intros x y z T1 T2 n.
- (* Transitivity *) unfold Transitive. intros x y z T1 T2 n.
transitivity (contents y n); [apply T1 | apply T2]; assumption.
Defined. (* We have to use 'Defined' here instead of 'Qed' so that we can unfold 'RMA' later on *)
(* end hide *)
@ -255,18 +247,20 @@ Hint Resolve RMA.
(** ** Reference monitor assumptions *)
(* TODO: explain those assumptions *)
Class RefMonAssumptions `{Policy domain} `{StructuredState domain} :=
{ rma1 : forall (a : action) s t,
view_partition (dom a) s t -> output s a = output t a
; rma2 : forall a s t n,
view_partition (dom a) s t ->
((contents (step s a) n) (contents s n)
(contents (step t a) n) (contents t n))
-> contents (step s a) n = contents (step t a) n
; rma3 : forall a s n,
contents (step s a) n contents s n -> n alter (dom a)
}.
Class RefMonAssumptions `{!Policy domain, !StructuredState domain} :=
{ rma1 :
forall (a : action) s t,
view_partition (dom a) s t -> output s a = output t a;
rma2 :
forall a s t n,
view_partition (dom a) s t ->
((contents (step s a) n) (contents s n)
(contents (step t a) n) (contents t n))
-> contents (step s a) n = contents (step t a) n;
rma3 :
forall a s n, contents (step s a) n contents s n -> n alter (dom a)
}.
(** If the reference monitor assumptions are satisfied, then the system is output-consistent *)
Global Instance OC `{RefMonAssumptions}: OutputConsistent RMA.
exact rma1. Defined.
@ -278,15 +272,15 @@ exact rma1. Defined.
*)
(* Theorem 2 *)
Theorem RMA_secutity `{RefMonAssumptions} :
Theorem RMA_secutity `{RefMonAssumptions} :
(forall u v, (policy u v) observe u observe v)
-> (forall u v n, (n alter u) (n observe v) (policy u v))
-> security.
Proof.
intros Cond1 Cond2. apply unwinding.
intros Cond1 Cond2. apply unwinding.
(** We apply the unwinding theorem, so we have to verify that
we locally respect policy and that we have step-consistency *)
unfold locally_respects_policy.
we locally respect policy and that we have step-consistency *)
unfold locally_respects_policy.
intros a u s.
(** In order to prove that the system locally respects the policy
@ -297,7 +291,7 @@ Proof.
intros opH. destruct opH as [n [??]].
eapply Cond2. eapply rma3. eauto. assumption.
intros NPolicy.
unfold view_partition, RMA, RMA_partition.
unfold view_partition, RMA, RMA_partition.
(* TODO: why can't decide automatically pick the instance value_dec? *)
intros. destruct (decide (contents s n = contents (step s a) n)) as [e|Ne]. assumption. exfalso. apply NPolicy. apply CP.
exists n; split; assumption.
@ -317,7 +311,7 @@ Proof.
(* We use the Second RM assmption to deal with this case *)
apply rma2. (* for this we have to show that s ~_(dom a) t *)
unfold view_partition, RMA, RMA_partition.
intros m L. apply A.
intros m L. apply A.
apply Cond1 with (u:=dom a).
apply Cond2 with (n:=n); [eapply rma3 | ]; eassumption.
assumption.
@ -326,7 +320,7 @@ Proof.
(* TODO: repetition *)
apply rma2. (* for this we have to show that s ~_(dom a) t *)
unfold view_partition, RMA, RMA_partition.
intros m L. apply A.
intros m L. apply A.
apply Cond1 with (u:=dom a).
apply Cond2 with (n:=n); [eapply rma3| ]; eassumption.
assumption.
@ -339,7 +333,7 @@ End ACI.
Section Intransitive.
(** Auxiliary definitions *)
Fixpoint sources `{Policy domain} (ls : list action) (d : domain) : FinSet domain :=
Fixpoint sources `{Policy domain} (ls : list action) (d : domain) : gset domain :=
match ls with
| [] => {[ d ]}
| a::tl => let src := sources tl d in
@ -351,7 +345,7 @@ Fixpoint sources `{Policy domain} (ls : list action) (d : domain) : FinSet domai
Lemma sources_mon `{Policy} : forall a ls d, sources ls d sources (a::ls) d.
Proof.
intros. simpl.
destruct (decide _); [apply union_subseteq_l |]; auto.
destruct (decide _); [apply union_subseteq_l |]; auto.
Qed.
Hint Resolve sources_mon.
@ -360,12 +354,12 @@ Lemma sources_monotone `{Policy} : forall ls js d, sublist ls js → sources ls
Proof.
intros ls js d M.
induction M. simpl. reflexivity.
simpl. destruct (decide ( v : domain, v sources l1 d policy (dom x) v)); destruct (decide ( v : domain, v sources l2 d policy (dom x) v)).
simpl. destruct (decide ( v : domain, v sources l1 d policy (dom x) v)); destruct (decide ( v : domain, v sources l2 d policy (dom x) v)).
- apply union_mono_r. assumption.
- exfalso. apply n. destruct e as [v [e1 e2]]. exists v; split; try (apply (IHM v)); assumption.
- transitivity (sources l2 d). assumption. apply union_subseteq_l.
- assumption.
- transitivity (sources l2 d); auto.
- transitivity (sources l2 d); auto.
Qed.
Lemma sources_in `{Policy} : forall ls d, d sources ls d.
@ -408,9 +402,13 @@ Proof.
apply (H ls (dom a)).
Qed.
Definition view_partition_general `{ViewPartition domain} (C : FinSet domain) s t := forall (u: domain), u C -> view_partition u s t.
Definition view_partition_general
`{!ViewPartition domain, !EqDecision domain, !Countable domain}
(C : gset domain) s t
:= forall (u: domain), u C -> view_partition u s t.
Global Instance view_partition_general_equiv `{ViewPartition domain}:
Global Instance view_partition_general_equiv
`{ViewPartition domain, !EqDecision domain, !Countable domain}:
forall V, Equivalence (view_partition_general V).
Proof.
intro V. split.
@ -422,10 +420,10 @@ Qed.
Definition weakly_step_consistent `{Policy domain} `{ViewPartition domain} :=
forall s t u a, view_partition u s t -> view_partition (dom a) s t -> view_partition u (step s a) (step t a).
Ltac exists_inside v :=
Ltac exists_inside v :=
let H := fresh "Holds" in
let nH := fresh "notHolds" in
destruct (decide _) as [H | []];
destruct (decide _) as [H | []];
[ try reflexivity | exists v; try auto].
Local Hint Resolve sources_mon.
@ -436,7 +434,7 @@ Local Hint Resolve elem_of_union.
(* Lemma 3 *)
Lemma weakly_step_consistent_general `{Policy domain} `{ViewPartition domain} (s t : state) (a : action) ls (u: domain) : weakly_step_consistent -> locally_respects_policy ->
view_partition_general (sources (a::ls) u) s t
view_partition_general (sources (a::ls) u) s t
-> view_partition_general (sources ls u) (step s a) (step t a).
Proof.
intros WSC LRP P v vIn.
@ -444,12 +442,12 @@ Proof.
unfold locally_respects_policy in LRP.
destruct (decide (policy (dom a) v)).
(* Case [dom a ~> v] *)
apply WSC; apply P. auto.
(* we need to show that [dom a ∈ sources (a::ls) v] *)
apply WSC; apply P. auto.
(* we need to show that [dom a ∈ sources (a::ls) v] *)
simpl. exists_inside v. apply elem_of_union. right. auto. apply elem_of_singleton; trivial.
(* Case [dom a ~/> v] *)
transitivity s. symmetry. apply LRP; assumption.
transitivity t. apply P. auto.
transitivity t. apply P. auto.
apply LRP; assumption.
Qed.
@ -476,14 +474,14 @@ Proof.
induction ls; intros s t.
simpl. intro A. apply (A u). apply elem_of_singleton; reflexivity.
intro VPG. simpl. unfold sources. fold (sources (a::ls) u).
destruct (decide _).
(** Case [dom a ∈ sources (a::ls) u] *)
simpl. apply IHls. apply weakly_step_consistent_general; auto.
(** Case [dom a ∉ sources (a::ls) u] *)
apply IHls. symmetry. transitivity t.
apply IHls. symmetry. transitivity t.
- intros v vIn. symmetry. apply VPG. apply sources_mon; exact vIn.
- apply locally_respects_gen; try(assumption).
- apply locally_respects_gen; try(assumption).
Qed.
@ -503,7 +501,7 @@ Proof. intro policyA.
unfold view_partition. unfold RMA_partition; simpl. intros n L.
destruct (decide (contents (step s a) n = contents s n)) as [E1 | NE1].
destruct (decide (contents (step t a) n = contents t n)) as [E2 | NE2].
(* Case [contents (step s a) n = contents s n /\ contents (step t a) n = contents t n] *)
(* Case [contents (step s a) n = contents s n /\ contents (step t a) n = contents t n] *)
rewrite E1, E2. apply A1; assumption.
(* Case [contents (step t a) n ≠ contents t n] *)
apply rma2; [ | right]; assumption.

View File

@ -1,2 +1,3 @@
-R . ""
-R . NI
Rushby.v
ArrayMachine.v