HITs-Examples/FiniteSets/implementations/lists.v

243 lines
6.3 KiB
Coq
Raw Permalink Normal View History

2017-08-02 11:40:03 +02:00
(* Implementation of [FSet A] using lists *)
2017-06-20 17:33:35 +02:00
Require Import HoTT HitTactics.
2017-10-09 23:41:29 +02:00
Require Import FSets set_interface kuratowski.length prelude dec_fset.
2017-06-20 17:33:35 +02:00
Section Operations.
2017-08-07 12:20:43 +02:00
Context `{Univalence}.
2017-06-20 17:33:35 +02:00
Global Instance list_empty A : hasEmpty (list A) := nil.
2017-06-20 17:33:35 +02:00
Global Instance list_single A: hasSingleton (list A) A := fun a => cons a nil.
Global Instance list_union A : hasUnion (list A).
2017-08-07 12:20:43 +02:00
Proof.
intros l1 l2.
2017-08-07 12:20:43 +02:00
induction l1.
* apply l2.
* apply (cons a IHl1).
Defined.
2017-06-20 17:33:35 +02:00
Global Instance list_membership A : hasMembership (list A) A.
2017-08-07 12:20:43 +02:00
Proof.
intros a l.
induction l as [ | b l IHl].
- apply False_hp.
- apply (hor (a = b) IHl).
Defined.
2017-06-20 17:33:35 +02:00
Global Instance list_comprehension A: hasComprehension (list A) A.
2017-08-07 12:20:43 +02:00
Proof.
intros ϕ l.
2017-08-07 12:20:43 +02:00
induction l as [ | b l IHl].
- apply nil.
- apply (if ϕ b then cons b IHl else IHl).
Defined.
2017-06-20 17:33:35 +02:00
2017-08-07 12:20:43 +02:00
Fixpoint list_to_set A (l : list A) : FSet A :=
2017-06-20 17:33:35 +02:00
match l with
| nil =>
| cons a l => {|a|} (list_to_set A l)
2017-06-20 17:33:35 +02:00
end.
End Operations.
Section ListToSet.
Variable A : Type.
2017-08-07 12:20:43 +02:00
Context `{Univalence}.
2017-06-20 17:33:35 +02:00
2017-08-07 12:20:43 +02:00
Lemma member_isIn (a : A) (l : list A) :
2017-08-07 16:49:46 +02:00
member a l = a (list_to_set A l).
2017-06-20 17:33:35 +02:00
Proof.
2017-08-07 12:20:43 +02:00
induction l ; unfold member in * ; simpl in *.
2017-06-20 17:33:35 +02:00
- reflexivity.
2017-08-07 12:20:43 +02:00
- rewrite IHl.
unfold hor, merely, lor.
apply path_iff_hprop ; intros z ; strip_truncations ; destruct z as [z1 | z2].
* apply (tr (inl (tr z1))).
* apply (tr (inr z2)).
* strip_truncations ; apply (tr (inl z1)).
* apply (tr (inr z2)).
2017-06-20 17:33:35 +02:00
Defined.
Definition empty_empty : list_to_set A = := idpath.
2017-06-20 17:33:35 +02:00
2017-08-07 12:20:43 +02:00
Lemma filter_comprehension (ϕ : A -> Bool) (l : list A) :
list_to_set A (filter ϕ l) = {| list_to_set A l & ϕ |}.
2017-06-20 17:33:35 +02:00
Proof.
induction l ; cbn in *.
- reflexivity.
- destruct (ϕ a) ; cbn in * ; unfold list_to_set in IHl.
2017-08-07 16:49:46 +02:00
* refine (ap (fun y => {|a|} y) _).
2017-06-20 17:33:35 +02:00
apply IHl.
* rewrite nl.
apply IHl.
Defined.
2017-08-07 16:49:46 +02:00
Definition singleton_single (a : A) : list_to_set A (singleton a) = {|a|} :=
nr {|a|}.
2017-06-20 17:33:35 +02:00
2017-08-07 12:20:43 +02:00
Lemma append_union (l1 l2 : list A) :
list_to_set A (list_union _ l1 l2) = (list_to_set A l1) (list_to_set A l2).
2017-06-20 17:33:35 +02:00
Proof.
induction l1 ; simpl.
- apply (nl _)^.
- rewrite IHl1, assoc.
reflexivity.
Defined.
Fixpoint reverse (l : list A) : list A :=
match l with
| nil => nil
2017-09-29 23:31:06 +02:00
| cons a l => {|a|} (reverse l) {|a|}
end.
Lemma reverse_set (l : list A) :
list_to_set A l = list_to_set A (reverse l).
Proof.
induction l ; simpl.
- reflexivity.
2017-10-09 23:41:29 +02:00
- rewrite IHl, append_union.
simpl.
2017-09-29 23:31:06 +02:00
symmetry.
rewrite nr, comm, <- assoc, idem.
apply comm.
2017-06-20 17:33:35 +02:00
Defined.
2017-08-07 12:20:43 +02:00
End ListToSet.
2017-06-20 17:33:35 +02:00
2017-08-07 12:20:43 +02:00
Section lists_are_sets.
Context `{Univalence}.
2017-06-20 17:33:35 +02:00
2017-10-09 23:41:29 +02:00
Global Instance lists_sets : sets list list_to_set.
2017-08-07 12:20:43 +02:00
Proof.
split ; intros.
- apply empty_empty.
- apply singleton_single.
- apply append_union.
- apply filter_comprehension.
- apply member_isIn.
Defined.
End lists_are_sets.
2017-10-09 23:41:29 +02:00
Section refinement_examples.
Context `{Univalence}.
Context {A : Type}.
Definition list_all (ϕ : A -> hProp) : list A -> hProp
:= refinement list list_to_set (all ϕ).
Lemma list_all_set (ϕ : A -> hProp) (X : list A)
: list_all ϕ X = all ϕ (list_to_set A X).
Proof.
induction X ; try reflexivity.
Defined.
Lemma list_all_intro (X : list A) (ϕ : A -> hProp)
: forall (HX : forall a, a X -> ϕ a), list_all ϕ X.
Proof.
rewrite list_all_set.
intros H1.
assert (forall (a : A), a (list_to_set A X) -> ϕ a) as H2.
{
intros a H3.
rewrite <- (member_isIn A a X) in H3.
apply (H1 a H3).
}
apply (all_intro _ _ H2).
Defined.
Lemma list_all_elim (X : list A) (ϕ : A -> hProp) a
: list_all ϕ X -> (a X) -> ϕ a.
Proof.
rewrite list_all_set, (member_isIn A a X).
apply all_elim.
Defined.
Definition list_exist (ϕ : A -> hProp) : list A -> hProp
:= refinement list list_to_set (exist ϕ).
Lemma list_exist_set (ϕ : A -> hProp) (X : list A)
: list_exist ϕ X = exist ϕ (list_to_set A X).
Proof.
induction X ; try reflexivity.
Defined.
Lemma listexist_intro (X : list A) (ϕ : A -> hProp) a
: a X -> ϕ a -> list_exist ϕ X.
Proof.
rewrite list_exist_set, (member_isIn A a X).
apply exist_intro.
Defined.
Lemma exist_elim (X : list A) (ϕ : A -> hProp)
: list_exist ϕ X -> hexists (fun a => a X * ϕ a).
Proof.
rewrite list_exist_set.
assert (hexists (fun a : A => a (list_to_set A X) * ϕ a)
-> hexists (fun a : A => a X * ϕ a))
as H2.
{
intros H1.
strip_truncations.
destruct H1 as [a H1].
rewrite <- (member_isIn A a X) in H1.
refine (tr(a;H1)).
}
intros H1.
apply (H2 (exist_elim _ _ H1)).
Defined.
Context `{MerelyDecidablePaths A}.
Global Instance dec_memb a (l : list A) : Decidable (a l).
Proof.
induction l as [ | a0 l] ; simpl.
- apply _.
- unfold Decidable.
destruct IHl as [t | p].
* apply (inl(tr(inr t))).
* destruct (H0 a a0) as [t | p'].
** left.
strip_truncations.
apply (tr(inl t)).
** refine (inr(fun n => _)).
strip_truncations.
destruct n as [n1 | n2].
*** apply (p' (tr n1)).
*** apply (p n2).
Defined.
Global Instance dec_memb_list : hasMembership_decidable (list A) A.
Proof.
intros a l.
destruct (dec (a l)).
- apply true.
- apply false.
Defined.
Lemma fset_list_memb a (l : list A) : a _d (list_to_set A l) = a _d l.
Proof.
unfold member_dec, dec_memb_list, fset_member_bool.
destruct (dec a (list_to_set A l)), (dec a l) ; try reflexivity.
- contradiction n.
rewrite <- (f_member _ list_to_set) in t.
apply t.
- contradiction n.
rewrite (f_member _ list_to_set) in t.
apply t.
Defined.
Definition set_length : list A -> nat
:= refinement list list_to_set length.
Definition set_length_nil : set_length nil = 0 := idpath.
Definition set_length_cons a l
: set_length (cons a l) = if (a _d l) then set_length l else S(set_length l).
Proof.
unfold set_length, refinement.
simpl.
rewrite length_compute, fset_list_memb.
reflexivity.
Defined.
End refinement_examples.