2017-08-07 12:20:43 +02:00
|
|
|
Require Import HoTT.
|
|
|
|
Require Import FSets.
|
|
|
|
|
|
|
|
Section structure.
|
|
|
|
Variable (T : Type -> Type).
|
|
|
|
|
|
|
|
Class hasMembership : Type :=
|
|
|
|
member : forall A : Type, A -> T A -> hProp.
|
|
|
|
|
|
|
|
Class hasEmpty : Type :=
|
|
|
|
empty : forall A, T A.
|
|
|
|
|
|
|
|
Class hasSingleton : Type :=
|
|
|
|
singleton : forall A, A -> T A.
|
|
|
|
|
|
|
|
Class hasUnion : Type :=
|
|
|
|
union : forall A, T A -> T A -> T A.
|
|
|
|
|
|
|
|
Class hasComprehension : Type :=
|
|
|
|
filter : forall A, (A -> Bool) -> T A -> T A.
|
|
|
|
End structure.
|
|
|
|
|
|
|
|
Arguments member {_} {_} {_} _ _.
|
|
|
|
Arguments empty {_} {_} {_}.
|
|
|
|
Arguments singleton {_} {_} {_} _.
|
|
|
|
Arguments union {_} {_} {_} _ _.
|
|
|
|
Arguments filter {_} {_} {_} _ _.
|
|
|
|
|
|
|
|
Section interface.
|
|
|
|
Context `{Univalence}.
|
|
|
|
Variable (T : Type -> Type)
|
|
|
|
(f : forall A, T A -> FSet A).
|
|
|
|
Context `{hasMembership T, hasEmpty T, hasSingleton T, hasUnion T, hasComprehension T}.
|
|
|
|
|
|
|
|
Class sets :=
|
|
|
|
{
|
|
|
|
f_empty : forall A, f A empty = E ;
|
|
|
|
f_singleton : forall A a, f A (singleton a) = L a;
|
|
|
|
f_union : forall A X Y, f A (union X Y) = U (f A X) (f A Y);
|
|
|
|
f_filter : forall A ϕ X, f A (filter ϕ X) = comprehension ϕ (f A X);
|
|
|
|
f_member : forall A a X, member a X = isIn a (f A X)
|
|
|
|
}.
|
2017-08-07 14:55:07 +02:00
|
|
|
End interface.
|
|
|
|
|
|
|
|
Section properties.
|
|
|
|
Context `{Univalence}.
|
|
|
|
Variable (T : Type -> Type) (f : forall A, T A -> FSet A).
|
|
|
|
Context `{sets T f}.
|
|
|
|
|
|
|
|
Definition set_eq : forall A, T A -> T A -> hProp := fun A X Y => (BuildhProp (f A X = f A Y)).
|
|
|
|
|
|
|
|
Definition set_subset : forall A, T A -> T A -> hProp := fun A X Y => subset (f A X) (f A Y).
|
|
|
|
|
|
|
|
Ltac reduce := intros ; repeat (rewrite ?(f_empty _ _) ; rewrite ?(f_singleton _ _) ;
|
|
|
|
rewrite ?(f_union _ _) ; rewrite ?(f_filter _ _) ;
|
|
|
|
rewrite ?(f_member _ _)).
|
|
|
|
|
|
|
|
Definition empty_isIn : forall (A : Type) (a : A), member a empty = False_hp.
|
|
|
|
Proof.
|
|
|
|
reduce.
|
|
|
|
reflexivity.
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
Definition singleton_isIn : forall (A : Type) (a b : A),
|
|
|
|
member a (singleton b) = BuildhProp (Trunc (-1) (a = b)).
|
|
|
|
Proof.
|
|
|
|
reduce.
|
|
|
|
reflexivity.
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
Definition union_isIn : forall (A : Type) (a : A) (X Y : T A),
|
|
|
|
member a (union X Y) = lor (member a X) (member a Y).
|
|
|
|
Proof.
|
|
|
|
reduce.
|
|
|
|
reflexivity.
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
Definition filter_isIn : forall (A : Type) (a : A) (ϕ : A -> Bool) (X : T A),
|
|
|
|
member a (filter ϕ X) = if ϕ a then member a X else False_hp.
|
|
|
|
Proof.
|
|
|
|
reduce.
|
|
|
|
apply properties.comprehension_isIn.
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
Definition reflect_eq : forall (A : Type) (X Y : T A),
|
|
|
|
f A X = f A Y -> set_eq A X Y.
|
|
|
|
Proof.
|
|
|
|
auto.
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
Definition reflect_subset : forall (A : Type) (X Y : T A),
|
|
|
|
subset (f A X) (f A Y) -> set_subset A X Y.
|
|
|
|
Proof.
|
|
|
|
auto.
|
|
|
|
Defined.
|
|
|
|
|
2017-08-07 15:39:01 +02:00
|
|
|
Hint Unfold set_eq set_subset.
|
|
|
|
|
|
|
|
Ltac simplify := intros ; autounfold in * ; apply reflect_eq ; reduce.
|
|
|
|
|
|
|
|
Definition well_defined_union : forall (A : Type) (X1 X2 Y1 Y2 : T A),
|
|
|
|
set_eq A X1 Y1 -> set_eq A X2 Y2 -> set_eq A (union X1 X2) (union Y1 Y2).
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
rewrite X, X0.
|
|
|
|
reflexivity.
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
Definition well_defined_filter : forall (A : Type) (ϕ : A -> Bool) (X Y : T A),
|
|
|
|
set_eq A X Y -> set_eq A (filter ϕ X) (filter ϕ Y).
|
|
|
|
Proof.
|
|
|
|
simplify.
|
|
|
|
rewrite X0.
|
|
|
|
reflexivity.
|
|
|
|
Defined.
|
|
|
|
|
2017-08-07 14:55:07 +02:00
|
|
|
Variable (A : Type).
|
|
|
|
Context `{DecidablePaths A}.
|
|
|
|
|
|
|
|
Lemma union_comm : forall (X Y : T A),
|
|
|
|
set_eq A (union X Y) (union Y X).
|
|
|
|
Proof.
|
2017-08-07 15:39:01 +02:00
|
|
|
simplify.
|
2017-08-07 14:55:07 +02:00
|
|
|
apply lattice_fset.
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
End properties.
|