mirror of https://github.com/nmvdw/HITs-Examples
Added basis for reflection in interface
This commit is contained in:
parent
d9cde16f5a
commit
d5585f32c6
|
@ -181,4 +181,33 @@ Section properties.
|
|||
apply (tr (inl Xa)).
|
||||
Defined.
|
||||
|
||||
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
|
||||
isIn a (comprehension ϕ X) = if ϕ a then isIn a X else False_hp.
|
||||
Proof.
|
||||
hinduction ; try (intros ; apply set_path2) ; cbn.
|
||||
- destruct (ϕ a) ; reflexivity.
|
||||
- intros b.
|
||||
assert (forall c d, ϕ a = c -> ϕ b = d ->
|
||||
a ∈ (if ϕ b then {|b|} else ∅)
|
||||
=
|
||||
(if ϕ a then BuildhProp (Trunc (-1) (a = b)) else False_hp)) as X.
|
||||
{
|
||||
intros c d Hc Hd.
|
||||
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
|
||||
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
|
||||
; apply (false_ne_true).
|
||||
* apply (Hd^ @ ap ϕ X^ @ Hc).
|
||||
* apply (Hc^ @ ap ϕ X @ Hd).
|
||||
}
|
||||
apply (X (ϕ a) (ϕ b) idpath idpath).
|
||||
- intros X Y H1 H2.
|
||||
rewrite H1, H2.
|
||||
destruct (ϕ a).
|
||||
* reflexivity.
|
||||
* apply path_iff_hprop.
|
||||
** intros Z ; strip_truncations.
|
||||
destruct Z ; assumption.
|
||||
** intros ; apply tr ; right ; assumption.
|
||||
Defined.
|
||||
|
||||
End properties.
|
||||
|
|
|
@ -40,4 +40,70 @@ Section interface.
|
|||
f_filter : forall A ϕ X, f A (filter ϕ X) = comprehension ϕ (f A X);
|
||||
f_member : forall A a X, member a X = isIn a (f A X)
|
||||
}.
|
||||
End interface.
|
||||
End interface.
|
||||
|
||||
Section properties.
|
||||
Context `{Univalence}.
|
||||
Variable (T : Type -> Type) (f : forall A, T A -> FSet A).
|
||||
Context `{sets T f}.
|
||||
|
||||
Definition set_eq : forall A, T A -> T A -> hProp := fun A X Y => (BuildhProp (f A X = f A Y)).
|
||||
|
||||
Definition set_subset : forall A, T A -> T A -> hProp := fun A X Y => subset (f A X) (f A Y).
|
||||
|
||||
Ltac reduce := intros ; repeat (rewrite ?(f_empty _ _) ; rewrite ?(f_singleton _ _) ;
|
||||
rewrite ?(f_union _ _) ; rewrite ?(f_filter _ _) ;
|
||||
rewrite ?(f_member _ _)).
|
||||
|
||||
Definition empty_isIn : forall (A : Type) (a : A), member a empty = False_hp.
|
||||
Proof.
|
||||
reduce.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Definition singleton_isIn : forall (A : Type) (a b : A),
|
||||
member a (singleton b) = BuildhProp (Trunc (-1) (a = b)).
|
||||
Proof.
|
||||
reduce.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Definition union_isIn : forall (A : Type) (a : A) (X Y : T A),
|
||||
member a (union X Y) = lor (member a X) (member a Y).
|
||||
Proof.
|
||||
reduce.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Definition filter_isIn : forall (A : Type) (a : A) (ϕ : A -> Bool) (X : T A),
|
||||
member a (filter ϕ X) = if ϕ a then member a X else False_hp.
|
||||
Proof.
|
||||
reduce.
|
||||
apply properties.comprehension_isIn.
|
||||
Defined.
|
||||
|
||||
Definition reflect_eq : forall (A : Type) (X Y : T A),
|
||||
f A X = f A Y -> set_eq A X Y.
|
||||
Proof.
|
||||
auto.
|
||||
Defined.
|
||||
|
||||
Definition reflect_subset : forall (A : Type) (X Y : T A),
|
||||
subset (f A X) (f A Y) -> set_subset A X Y.
|
||||
Proof.
|
||||
auto.
|
||||
Defined.
|
||||
|
||||
Variable (A : Type).
|
||||
Context `{DecidablePaths A}.
|
||||
|
||||
Lemma union_comm : forall (X Y : T A),
|
||||
set_eq A (union X Y) (union Y X).
|
||||
Proof.
|
||||
intros.
|
||||
apply reflect_eq.
|
||||
reduce.
|
||||
apply lattice_fset.
|
||||
Defined.
|
||||
|
||||
End properties.
|
Loading…
Reference in New Issue