HITs-Examples/FSet.v

639 lines
17 KiB
Coq
Raw Normal View History

2017-04-19 17:16:17 +02:00
Require Import HoTT.
Require Export HoTT.
2017-05-22 18:11:47 +02:00
Require Import FunextAxiom.
2017-04-19 17:16:17 +02:00
Module Export FinSet.
2017-05-22 18:11:47 +02:00
Section FSet.
Variable A : Type.
2017-04-19 17:16:17 +02:00
Private Inductive FSet : Type :=
2017-05-22 18:11:47 +02:00
| E : FSet
| L : A -> FSet
2017-04-19 17:16:17 +02:00
| U : FSet -> FSet -> FSet.
2017-05-22 18:11:47 +02:00
Notation "{| x |}" := (L x).
Infix "" := U (at level 8, right associativity).
Notation "" := E.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Axiom assoc : forall (x y z : FSet ),
x (y z) = (x y) z.
2017-04-19 17:16:17 +02:00
Axiom comm : forall (x y : FSet),
2017-05-22 18:11:47 +02:00
x y = y x.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Axiom nl : forall (x : FSet),
x = x.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Axiom nr : forall (x : FSet),
x = x.
2017-04-19 17:16:17 +02:00
Axiom idem : forall (x : A),
2017-05-22 18:11:47 +02:00
{| x |} {|x|} = {|x|}.
2017-04-19 17:16:17 +02:00
Axiom trunc : IsHSet FSet.
Fixpoint FSet_rec
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet)
{struct x}
: P
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
2017-05-22 18:11:47 +02:00
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
2017-04-19 17:16:17 +02:00
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
2017-05-22 18:11:47 +02:00
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
2017-04-19 17:16:17 +02:00
end) assocP commP nlP nrP idemP H.
Axiom FSet_rec_beta_assoc : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x y z : FSet),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_rec_beta_comm : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x y : FSet),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_rec_beta_nl : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_rec_beta_nr : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_rec_beta_idem : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : A),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
2017-04-19 17:16:17 +02:00
=
idemP x.
2017-05-22 18:11:47 +02:00
(* Induction principle *)
2017-04-19 17:16:17 +02:00
Fixpoint FSet_ind
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
2017-05-22 18:11:47 +02:00
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
(commP : forall (x y: FSet) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px)
(nlP : forall (x : FSet) (px: P x),
2017-05-22 18:11:47 +02:00
nl x # uP E x eP px = px)
2017-04-19 17:16:17 +02:00
(nrP : forall (x : FSet) (px: P x),
2017-05-22 18:11:47 +02:00
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x : FSet)
{struct x}
: P x
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
2017-05-22 18:11:47 +02:00
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
2017-04-19 17:16:17 +02:00
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
end) H assocP commP nlP nrP idemP.
Axiom FSet_ind_beta_assoc : forall
2017-05-22 18:11:47 +02:00
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y: FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
2017-05-22 18:11:47 +02:00
(x y z : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP)
2017-04-19 17:16:17 +02:00
(assoc x y z)
=
(assocP x y z
2017-05-22 18:11:47 +02:00
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
2017-04-19 17:16:17 +02:00
).
2017-05-22 18:11:47 +02:00
Axiom FSet_ind_beta_comm : forall
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y : FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
2017-05-22 18:11:47 +02:00
(x y : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (comm x y)
2017-04-19 17:16:17 +02:00
=
(commP x y
2017-05-22 18:11:47 +02:00
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_ind_beta_nl : forall
2017-05-22 18:11:47 +02:00
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y : FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
2017-05-22 18:11:47 +02:00
(x : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nl x)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(nlP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_ind_beta_nr : forall
2017-05-22 18:11:47 +02:00
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y : FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
2017-05-22 18:11:47 +02:00
(x : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nr x)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(nrP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_ind_beta_idem : forall
2017-05-22 18:11:47 +02:00
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y : FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x : A),
2017-05-22 18:11:47 +02:00
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (idem x)
2017-04-19 17:16:17 +02:00
=
idemP x.
2017-05-22 18:11:47 +02:00
End FSet.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Parameter A : Type.
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
Definition deceq (x y : A) :=
if dec (x = y) then true else false.
Theorem deceq_sym : forall x y, deceq x y = deceq y x.
Proof.
intros x y.
unfold deceq.
destruct (dec (x = y)) ; destruct (dec (y = x)) ; cbn.
- reflexivity.
- pose (n (p^)) ; contradiction.
- pose (n (p^)) ; contradiction.
- reflexivity.
Defined.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
2017-04-19 17:16:17 +02:00
Theorem idemU : forall x : FSet A, U x x = x.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- apply nl.
- apply idem.
- intros x y P Q.
2017-05-23 21:31:45 +02:00
etransitivity. apply assoc.
etransitivity. apply (ap (fun p => U (U p x) y) (comm A x y)).
etransitivity. apply (ap (fun p => U p y) (assoc A y x x))^.
etransitivity. apply (ap (fun p => U (U y p) y) P).
etransitivity. apply (ap (fun p => U p y) (comm A y x)).
etransitivity. apply (assoc A x y y)^.
apply (ap (fun p => U x p) Q).
Defined.
2017-05-22 18:11:47 +02:00
Definition isIn : A -> FSet A -> Bool.
2017-04-19 17:16:17 +02:00
Proof.
2017-05-22 18:11:47 +02:00
intros a.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
- exact false.
- intro a'. apply (deceq a a').
2017-05-22 18:11:47 +02:00
- apply orb.
- intros x y z. destruct x; reflexivity.
- intros x y. destruct x, y; reflexivity.
- intros x. reflexivity.
- intros x. destruct x; reflexivity.
- intros a'. destruct (deceq a a'); reflexivity.
2017-04-19 17:16:17 +02:00
Defined.
2017-05-22 18:11:47 +02:00
Definition comprehension :
2017-04-19 17:16:17 +02:00
(A -> Bool) -> FSet A -> FSet A.
Proof.
2017-05-22 18:11:47 +02:00
intros P.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
- apply E.
- intro a.
refine (if (P a) then L a else E).
- apply U.
2017-05-23 21:31:45 +02:00
- intros. apply assoc.
- intros. apply comm.
- intros. apply nl.
- intros. apply nr.
- intros. cbn.
destruct (P x).
2017-05-22 18:11:47 +02:00
+ apply idem.
+ apply nl.
2017-04-19 17:16:17 +02:00
Defined.
2017-05-23 21:31:45 +02:00
Theorem comprehension_or : forall ϕ ψ x,
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x) (comprehension ψ x).
2017-04-19 17:16:17 +02:00
Proof.
2017-05-23 21:31:45 +02:00
intros ϕ ψ.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- cbn. symmetry ; apply nl.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply idem.
* apply nr.
* apply nl.
* apply nl.
- simpl. intros x y P Q.
cbn.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc A (comprehension ψ x)).
rewrite (comm A (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
2017-04-19 17:16:17 +02:00
Defined.
2017-05-23 21:31:45 +02:00
Definition intersection (X Y : FSet A) : FSet A := comprehension (fun (a : A) => isIn a X) Y.
Theorem intersection_idem : forall x, intersection x x = x.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- reflexivity.
- intro a.
unfold deceq.
destruct (dec (a = a)).
* reflexivity.
* pose (n idpath) ; contradiction.
- intros x y P Q.
rewrite comprehension_or.
rewrite comprehension_or.
unfold intersection in P.
unfold intersection in Q.
rewrite P.
rewrite Q.
Admitted.
Theorem intersection_EX : forall x,
2017-05-22 18:11:47 +02:00
intersection E x = E.
2017-04-19 17:16:17 +02:00
Proof.
2017-05-22 18:11:47 +02:00
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- reflexivity.
- intro a.
2017-04-19 17:16:17 +02:00
reflexivity.
2017-05-22 18:11:47 +02:00
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply nl.
2017-04-19 17:16:17 +02:00
Defined.
2017-05-23 21:31:45 +02:00
Definition intersection_XE x : intersection x E = E := idpath.
2017-05-22 18:11:47 +02:00
Theorem intersection_La : forall a x,
intersection (L a) x = if isIn a x then L a else E.
2017-04-19 17:16:17 +02:00
Proof.
2017-05-22 18:11:47 +02:00
intro a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- reflexivity.
- intro b.
cbn.
rewrite deceq_sym.
unfold deceq.
destruct (dec (a = b)).
* rewrite p ; reflexivity.
* reflexivity.
2017-05-22 18:11:47 +02:00
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y).
* apply idem.
* apply nr.
* apply nl.
* apply nl.
Defined.
2017-05-22 18:11:47 +02:00
2017-05-23 21:31:45 +02:00
(*
Theorem intersection_comm : forall x y,
intersection x y = intersection y x.
2017-05-22 18:11:47 +02:00
Proof.
2017-05-23 21:31:45 +02:00
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
- intros.
rewrite intersection_E.
reflexivity.
- intros a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
* reflexivity.
* intro b.
admit.
* intros x y.
destruct (isIn a x) ; destruct (isIn a y) ; intros P Q.
+ rewrite P.
*)
Theorem comp_false : forall x,
comprehension (fun _ => false) x = E.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- reflexivity.
- intro a ; reflexivity.
- intros x y P Q.
2017-05-22 18:11:47 +02:00
rewrite P.
rewrite Q.
2017-05-23 21:31:45 +02:00
apply nl.
Defined.
2017-05-23 21:31:45 +02:00
(*Theorem union_dist : forall x y z,
intersection z (U x y) = U (intersection z x) (intersection z y).
Proof.
intros x y.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
- rewrite intersection_E.
rewrite intersection_E.
rewrite comp_false.
rewrite comp_false.
reflexivity.
- intro a.
*)
Theorem union_dist : forall x y z,
intersection (U x y) z = U (intersection x z) (intersection y z).
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
- intros.
rewrite nl.
rewrite intersection_EX.
rewrite nl.
reflexivity.
- intro a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
* intros.
rewrite nr.
rewrite intersection_EX.
rewrite nr.
reflexivity.
* intros b.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
+ rewrite nl. reflexivity.
+ intros c.
unfold deceq.
destruct (dec (c = a)) ; destruct (dec (c = b)) ; cbn.
{ rewrite idem. reflexivity. }
{ rewrite nr. reflexivity. }
{ rewrite nl. reflexivity. }
{ rewrite nl. reflexivity. }
+ intros x y P Q.
rewrite comprehension_or.
rewrite comprehension_or.
rewrite assoc.
rewrite <- (assoc A (comprehension (fun a0 : A => deceq a0 a) x) (comprehension (fun a0 : A => deceq a0 b) x)).
rewrite (comm A (comprehension (fun a0 : A => deceq a0 b) x) (comprehension (fun a0 : A => deceq a0 a) y)).
rewrite assoc.
rewrite <- assoc.
reflexivity.
+ admit.
+ admit.
+ admit.
+ admit.
+ admit.
* intros x y P Q z.
cbn.
Admitted.
Theorem intersection_isIn : forall a x y,
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
Proof.
intros a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
- intros y.
2017-05-23 21:31:45 +02:00
rewrite intersection_EX.
reflexivity.
- intros b y.
rewrite intersection_La.
unfold deceq.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b y).
+ cbn.
unfold deceq.
destruct (dec (b = b)).
{ reflexivity. }
{ pose (n idpath). contradiction. }
+ reflexivity.
* destruct (isIn b y).
+ cbn.
unfold deceq.
destruct (dec (a = b)).
{ pose (n p). contradiction. }
{ reflexivity. }
+ reflexivity.
- intros x y P Q z.
2017-05-23 21:31:45 +02:00
rewrite union_dist.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y) ; destruct (isIn a z) ; reflexivity.
Admitted.
2017-05-23 21:31:45 +02:00
Theorem intersection_assoc x y z :
2017-05-22 18:11:47 +02:00
intersection x (intersection y z) = intersection (intersection x y) z.
Proof.
2017-05-23 21:31:45 +02:00
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _ x) ; cbn ; try (intros ; apply set_path2).
- intros.
exact _.
- cbn.
2017-05-22 18:11:47 +02:00
rewrite intersection_E.
rewrite intersection_E.
rewrite intersection_E.
reflexivity.
- intros a y z.
2017-05-22 18:11:47 +02:00
cbn.
rewrite intersection_La.
rewrite intersection_La.
rewrite intersection_isIn.
2017-05-22 18:11:47 +02:00
destruct (isIn a y).
* rewrite intersection_La.
destruct (isIn a z).
+ reflexivity.
2017-05-22 18:11:47 +02:00
+ reflexivity.
* rewrite intersection_E.
reflexivity.
- unfold intersection. cbn.
intros x y P Q z z'.
rewrite comprehension_or.
rewrite P.
rewrite Q.
rewrite comprehension_or.
cbn.
rewrite comprehension_or.
reflexivity.
2017-05-23 21:31:45 +02:00
Admitted.