HITs-Examples/FSet.v

456 lines
12 KiB
Coq
Raw Normal View History

2017-04-19 17:16:17 +02:00
Require Import HoTT.
Require Export HoTT.
2017-05-22 18:11:47 +02:00
Require Import FunextAxiom.
2017-04-19 17:16:17 +02:00
Module Export FinSet.
2017-05-22 18:11:47 +02:00
Section FSet.
Variable A : Type.
2017-04-19 17:16:17 +02:00
Private Inductive FSet : Type :=
2017-05-22 18:11:47 +02:00
| E : FSet
| L : A -> FSet
2017-04-19 17:16:17 +02:00
| U : FSet -> FSet -> FSet.
2017-05-22 18:11:47 +02:00
Notation "{| x |}" := (L x).
Infix "" := U (at level 8, right associativity).
Notation "" := E.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Axiom assoc : forall (x y z : FSet ),
x (y z) = (x y) z.
2017-04-19 17:16:17 +02:00
Axiom comm : forall (x y : FSet),
2017-05-22 18:11:47 +02:00
x y = y x.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Axiom nl : forall (x : FSet),
x = x.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Axiom nr : forall (x : FSet),
x = x.
2017-04-19 17:16:17 +02:00
Axiom idem : forall (x : A),
2017-05-22 18:11:47 +02:00
{| x |} {|x|} = {|x|}.
2017-04-19 17:16:17 +02:00
Axiom trunc : IsHSet FSet.
Fixpoint FSet_rec
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet)
{struct x}
: P
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
2017-05-22 18:11:47 +02:00
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
2017-04-19 17:16:17 +02:00
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
2017-05-22 18:11:47 +02:00
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
2017-04-19 17:16:17 +02:00
end) assocP commP nlP nrP idemP H.
Axiom FSet_rec_beta_assoc : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x y z : FSet),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_rec_beta_comm : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x y : FSet),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_rec_beta_nl : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_rec_beta_nr : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_rec_beta_idem : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : A),
2017-05-22 18:11:47 +02:00
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
2017-04-19 17:16:17 +02:00
=
idemP x.
2017-05-22 18:11:47 +02:00
(* Induction principle *)
2017-04-19 17:16:17 +02:00
Fixpoint FSet_ind
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
2017-05-22 18:11:47 +02:00
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
(commP : forall (x y: FSet) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px)
(nlP : forall (x : FSet) (px: P x),
2017-05-22 18:11:47 +02:00
nl x # uP E x eP px = px)
2017-04-19 17:16:17 +02:00
(nrP : forall (x : FSet) (px: P x),
2017-05-22 18:11:47 +02:00
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x : FSet)
{struct x}
: P x
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
2017-05-22 18:11:47 +02:00
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
2017-04-19 17:16:17 +02:00
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
end) H assocP commP nlP nrP idemP.
Axiom FSet_ind_beta_assoc : forall
2017-05-22 18:11:47 +02:00
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y: FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
2017-05-22 18:11:47 +02:00
(x y z : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP)
2017-04-19 17:16:17 +02:00
(assoc x y z)
=
(assocP x y z
2017-05-22 18:11:47 +02:00
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
2017-04-19 17:16:17 +02:00
).
2017-05-22 18:11:47 +02:00
Axiom FSet_ind_beta_comm : forall
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y : FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
2017-05-22 18:11:47 +02:00
(x y : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (comm x y)
2017-04-19 17:16:17 +02:00
=
(commP x y
2017-05-22 18:11:47 +02:00
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_ind_beta_nl : forall
2017-05-22 18:11:47 +02:00
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y : FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
2017-05-22 18:11:47 +02:00
(x : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nl x)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(nlP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_ind_beta_nr : forall
2017-05-22 18:11:47 +02:00
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y : FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
2017-05-22 18:11:47 +02:00
(x : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nr x)
2017-04-19 17:16:17 +02:00
=
2017-05-22 18:11:47 +02:00
(nrP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
2017-04-19 17:16:17 +02:00
).
Axiom FSet_ind_beta_idem : forall
2017-05-22 18:11:47 +02:00
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
2017-04-19 17:16:17 +02:00
(lP : forall a: A, P (L a))
2017-05-22 18:11:47 +02:00
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
2017-04-19 17:16:17 +02:00
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
2017-05-22 18:11:47 +02:00
(commP : forall (x y : FSet) (px: P x) (py: P y),
2017-04-19 17:16:17 +02:00
comm x y #
uP x y px py = uP y x py px)
2017-05-22 18:11:47 +02:00
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
2017-04-19 17:16:17 +02:00
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x : A),
2017-05-22 18:11:47 +02:00
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (idem x)
2017-04-19 17:16:17 +02:00
=
idemP x.
2017-05-22 18:11:47 +02:00
End FSet.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Parameter A : Type.
Parameter eq : A -> A -> Bool.
Parameter eq_refl: forall a:A, eq a a = true.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
2017-04-19 17:16:17 +02:00
2017-05-22 18:11:47 +02:00
Definition isIn : A -> FSet A -> Bool.
2017-04-19 17:16:17 +02:00
Proof.
2017-05-22 18:11:47 +02:00
intros a.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
- exact false.
- intro a'. apply (eq a a').
- apply orb.
- intros x y z. destruct x; reflexivity.
- intros x y. destruct x, y; reflexivity.
- intros x. reflexivity.
- intros x. destruct x; reflexivity.
- intros a'. destruct (eq a a'); reflexivity.
2017-04-19 17:16:17 +02:00
Defined.
2017-05-22 18:11:47 +02:00
Set Implicit Arguments.
Definition comprehension :
2017-04-19 17:16:17 +02:00
(A -> Bool) -> FSet A -> FSet A.
Proof.
2017-05-22 18:11:47 +02:00
intros P.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
- apply E.
- intro a.
refine (if (P a) then L a else E).
- apply U.
- intros. cbv. apply assoc.
- intros. cbv. apply comm.
- intros. cbv. apply nl.
- intros. cbv. apply nr.
- intros. cbv.
destruct (P x); simpl.
+ apply idem.
+ apply nl.
2017-04-19 17:16:17 +02:00
Defined.
2017-05-22 18:11:47 +02:00
Definition intersection :
2017-04-19 17:16:17 +02:00
FSet A -> FSet A -> FSet A.
Proof.
2017-05-22 18:11:47 +02:00
intros X Y.
apply (comprehension (fun (a : A) => isIn a X) Y).
2017-04-19 17:16:17 +02:00
Defined.
2017-05-22 18:11:47 +02:00
Lemma intersection_E : forall x,
intersection E x = E.
2017-04-19 17:16:17 +02:00
Proof.
2017-05-22 18:11:47 +02:00
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- reflexivity.
- intro a.
2017-04-19 17:16:17 +02:00
reflexivity.
2017-05-22 18:11:47 +02:00
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply nl.
2017-04-19 17:16:17 +02:00
Defined.
2017-05-22 18:11:47 +02:00
Theorem intersection_La : forall a x,
intersection (L a) x = if isIn a x then L a else E.
2017-04-19 17:16:17 +02:00
Proof.
2017-05-22 18:11:47 +02:00
intro a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- reflexivity.
- intro b.
admit.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y).
* apply idem.
* apply nr.
* apply nl.
* apply nl.
Admitted.
Theorem comprehension_or : forall ϕ ψ x,
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x) (comprehension ψ x).
Proof.
intros ϕ ψ.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- cbn. symmetry ; apply nl.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply idem.
* apply nr.
* apply nl.
* apply nl.
- simpl. intros x y P Q.
cbn.
rewrite P.
rewrite Q.
Theorem intersection_assoc : forall x y z,
intersection x (intersection y z) = intersection (intersection x y) z.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- cbn.
intros y z.
rewrite intersection_E.
rewrite intersection_E.
rewrite intersection_E.
reflexivity.
- intro a.
cbn.
intros y z.
(* simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _ y) ; try (intros ; apply set_path2). *)
admit.
- unfold intersection.
intros x y P Q z z'.
cbn.
rewrite Q.
rewrite intersection_La.
rewrite intersection_La.
destruct (isIn a y).
* rewrite intersection_La.
destruct (isIn a (intersection y z)).
+ reflexivity.
+
*
destruct (isIn a (intersection y z)).