2017-05-23 16:30:31 +02:00
|
|
|
|
Require Import HoTT.
|
|
|
|
|
Require Export HoTT.
|
|
|
|
|
|
|
|
|
|
Module Export definition.
|
|
|
|
|
|
|
|
|
|
Section FSet.
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
|
|
|
|
|
Private Inductive FSet : Type :=
|
|
|
|
|
| E : FSet
|
|
|
|
|
| L : A -> FSet
|
|
|
|
|
| U : FSet -> FSet -> FSet.
|
|
|
|
|
|
|
|
|
|
Notation "{| x |}" := (L x).
|
|
|
|
|
Infix "∪" := U (at level 8, right associativity).
|
|
|
|
|
Notation "∅" := E.
|
|
|
|
|
|
|
|
|
|
Axiom assoc : forall (x y z : FSet ),
|
|
|
|
|
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
|
|
|
|
|
|
|
|
|
Axiom comm : forall (x y : FSet),
|
|
|
|
|
x ∪ y = y ∪ x.
|
|
|
|
|
|
|
|
|
|
Axiom nl : forall (x : FSet),
|
|
|
|
|
∅ ∪ x = x.
|
|
|
|
|
|
|
|
|
|
Axiom nr : forall (x : FSet),
|
|
|
|
|
x ∪ ∅ = x.
|
|
|
|
|
|
|
|
|
|
Axiom idem : forall (x : A),
|
|
|
|
|
{| x |} ∪ {|x|} = {|x|}.
|
|
|
|
|
|
|
|
|
|
Axiom trunc : IsHSet FSet.
|
|
|
|
|
|
|
|
|
|
End FSet.
|
2017-05-23 21:50:26 +02:00
|
|
|
|
|
2017-05-23 16:30:31 +02:00
|
|
|
|
Section FSet_induction.
|
|
|
|
|
Arguments E {_}.
|
|
|
|
|
Arguments U {_} _ _.
|
|
|
|
|
Arguments L {_} _.
|
|
|
|
|
Arguments assoc {_} _ _ _.
|
|
|
|
|
Arguments comm {_} _ _.
|
|
|
|
|
Arguments nl {_} _.
|
|
|
|
|
Arguments nr {_} _.
|
|
|
|
|
Arguments idem {_} _.
|
|
|
|
|
Variable A: Type.
|
|
|
|
|
Variable (P : FSet A -> Type).
|
|
|
|
|
Variable (H : forall a : FSet A, IsHSet (P a)).
|
|
|
|
|
Variable (eP : P E).
|
|
|
|
|
Variable (lP : forall a: A, P (L a)).
|
|
|
|
|
Variable (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
|
|
|
|
|
Variable (assocP : forall (x y z : FSet A)
|
|
|
|
|
(px: P x) (py: P y) (pz: P z),
|
|
|
|
|
assoc x y z #
|
|
|
|
|
(uP x (U y z) px (uP y z py pz))
|
|
|
|
|
=
|
|
|
|
|
(uP (U x y) z (uP x y px py) pz)).
|
|
|
|
|
Variable (commP : forall (x y: FSet A) (px: P x) (py: P y),
|
|
|
|
|
comm x y #
|
|
|
|
|
uP x y px py = uP y x py px).
|
|
|
|
|
Variable (nlP : forall (x : FSet A) (px: P x),
|
|
|
|
|
nl x # uP E x eP px = px).
|
|
|
|
|
Variable (nrP : forall (x : FSet A) (px: P x),
|
|
|
|
|
nr x # uP x E px eP = px).
|
|
|
|
|
Variable (idemP : forall (x : A),
|
|
|
|
|
idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
|
|
|
|
|
|
|
|
|
|
(* Induction principle *)
|
|
|
|
|
Fixpoint FSet_ind
|
|
|
|
|
(x : FSet A)
|
|
|
|
|
{struct x}
|
|
|
|
|
: P x
|
|
|
|
|
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
|
|
|
|
|
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
|
|
|
|
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
|
|
|
|
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
|
|
|
|
(FSet_ind y)
|
|
|
|
|
(FSet_ind z)
|
|
|
|
|
end) H assocP commP nlP nrP idemP.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
|
|
|
|
|
apD FSet_ind (assoc x y z) =
|
|
|
|
|
(assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
|
|
|
|
|
apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_nl : forall (x : FSet A),
|
|
|
|
|
apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_nr : forall (x : FSet A),
|
|
|
|
|
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
|
|
|
|
|
|
|
|
|
|
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
|
2017-05-23 21:50:26 +02:00
|
|
|
|
End FSet_induction.
|
2017-05-23 16:30:31 +02:00
|
|
|
|
|
2017-05-23 21:50:26 +02:00
|
|
|
|
Section FSet_recursion.
|
|
|
|
|
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
Variable P : Type.
|
|
|
|
|
Variable H: IsHSet P.
|
|
|
|
|
Variable e : P.
|
|
|
|
|
Variable l : A -> P.
|
|
|
|
|
Variable u : P -> P -> P.
|
|
|
|
|
Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
|
|
|
|
|
Variable commP : forall (x y : P), u x y = u y x.
|
|
|
|
|
Variable nlP : forall (x : P), u e x = x.
|
|
|
|
|
Variable nrP : forall (x : P), u x e = x.
|
|
|
|
|
Variable idemP : forall (x : A), u (l x) (l x) = l x.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec : FSet A -> P.
|
|
|
|
|
Proof.
|
|
|
|
|
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
|
|
|
|
|
- apply e.
|
|
|
|
|
- apply l.
|
|
|
|
|
- intros x y ; apply u.
|
|
|
|
|
- apply assocP.
|
|
|
|
|
- apply commP.
|
|
|
|
|
- apply nlP.
|
|
|
|
|
- apply nrP.
|
|
|
|
|
- apply idemP.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
|
|
|
|
|
ap FSet_rec (assoc A x y z)
|
|
|
|
|
=
|
|
|
|
|
assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (assoc A x y z) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_assoc.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_comm : forall (x y : FSet A),
|
|
|
|
|
ap FSet_rec (comm A x y)
|
|
|
|
|
=
|
|
|
|
|
commP (FSet_rec x) (FSet_rec y).
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (comm A x y) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_comm.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_nl : forall (x : FSet A),
|
|
|
|
|
ap FSet_rec (nl A x)
|
|
|
|
|
=
|
|
|
|
|
nlP (FSet_rec x).
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (nl A x) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_nl.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_nr : forall (x : FSet A),
|
|
|
|
|
ap FSet_rec (nr A x)
|
|
|
|
|
=
|
|
|
|
|
nrP (FSet_rec x).
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (nr A x) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_nr.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition FSet_rec_beta_idem : forall (a : A),
|
|
|
|
|
ap FSet_rec (idem A a)
|
|
|
|
|
=
|
|
|
|
|
idemP a.
|
|
|
|
|
Proof.
|
|
|
|
|
intros.
|
|
|
|
|
unfold FSet_rec.
|
|
|
|
|
eapply (cancelL (transport_const (idem A a) _)).
|
|
|
|
|
simple refine ((apD_const _ _)^ @ _).
|
|
|
|
|
apply FSet_ind_beta_idem.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End FSet_recursion.
|
2017-05-23 16:30:31 +02:00
|
|
|
|
|
|
|
|
|
End definition.
|