2017-08-03 12:27:43 +02:00
|
|
|
|
Require Import HoTT.
|
2017-09-07 15:44:22 +02:00
|
|
|
|
Require Import set_names lattice_interface lattice_examples prelude.
|
2017-08-03 12:27:43 +02:00
|
|
|
|
|
|
|
|
|
Section subobjects.
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
|
|
|
|
|
Definition Sub := A -> hProp.
|
2017-08-03 15:07:53 +02:00
|
|
|
|
|
2017-11-01 17:47:41 +01:00
|
|
|
|
Global Instance sub_empty : hasEmpty Sub := fun _ => ⊥.
|
|
|
|
|
Global Instance sub_union : hasUnion Sub := join.
|
|
|
|
|
Global Instance sub_intersection : hasIntersection Sub := meet.
|
2017-08-08 19:56:39 +02:00
|
|
|
|
Global Instance sub_singleton : hasSingleton Sub A
|
2017-11-06 15:25:56 +01:00
|
|
|
|
:= fun a b => merely (b = a).
|
2017-08-08 19:56:39 +02:00
|
|
|
|
Global Instance sub_membership : hasMembership Sub A := fun a X => X a.
|
|
|
|
|
Global Instance sub_comprehension : hasComprehension Sub A
|
|
|
|
|
:= fun ϕ X a => BuildhProp (X a * (ϕ a = true)).
|
|
|
|
|
Global Instance sub_subset `{Univalence} : hasSubset Sub
|
|
|
|
|
:= fun X Y => BuildhProp (forall a, X a -> Y a).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
|
2017-08-03 12:27:43 +02:00
|
|
|
|
End subobjects.
|
|
|
|
|
|
2017-08-03 15:07:53 +02:00
|
|
|
|
Section sub_classes.
|
|
|
|
|
Context {A : Type}.
|
2017-08-03 12:27:43 +02:00
|
|
|
|
Variable C : (A -> hProp) -> hProp.
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
|
2017-09-24 18:34:35 +02:00
|
|
|
|
Global Instance subobject_lattice : Lattice (Sub A).
|
2017-08-03 12:27:43 +02:00
|
|
|
|
Proof.
|
|
|
|
|
apply _.
|
|
|
|
|
Defined.
|
|
|
|
|
|
2017-08-08 19:56:39 +02:00
|
|
|
|
Definition closedUnion := forall X Y, C X -> C Y -> C (X ∪ Y).
|
|
|
|
|
Definition closedIntersection := forall X Y, C X -> C Y -> C (X ∩ Y).
|
|
|
|
|
Definition closedEmpty := C ∅.
|
|
|
|
|
Definition closedSingleton := forall a, C {|a|}.
|
|
|
|
|
Definition hasDecidableEmpty := forall X, C X -> hor (X = ∅) (hexists (fun a => a ∈ X)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
End sub_classes.
|
|
|
|
|
|
|
|
|
|
Section isIn.
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
Variable C : (A -> hProp) -> hProp.
|
|
|
|
|
|
|
|
|
|
Context `{Univalence}.
|
2017-08-08 17:44:27 +02:00
|
|
|
|
Context {HS : closedSingleton C} {HIn : forall X, C X -> forall a, Decidable (X a)}.
|
2017-08-03 15:07:53 +02:00
|
|
|
|
|
2017-09-01 16:56:49 +02:00
|
|
|
|
Theorem decidable_A_isIn (a b : A) : Decidable (Trunc (-1) (b = a)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
Proof.
|
2017-09-01 16:56:49 +02:00
|
|
|
|
destruct (HIn {|a|} (HS a) b).
|
|
|
|
|
- apply (inl t).
|
|
|
|
|
- refine (inr(fun p => _)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
strip_truncations.
|
|
|
|
|
contradiction (n (tr p)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End isIn.
|
|
|
|
|
|
|
|
|
|
Section intersect.
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
Variable C : (Sub A) -> hProp.
|
2017-09-01 17:08:00 +02:00
|
|
|
|
Context `{Univalence}
|
2017-08-08 17:44:27 +02:00
|
|
|
|
{HI : closedIntersection C} {HE : closedEmpty C}
|
|
|
|
|
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
|
2017-08-03 15:07:53 +02:00
|
|
|
|
|
2017-09-01 16:56:49 +02:00
|
|
|
|
Theorem decidable_A_intersect (a b : A) : Decidable (Trunc (-1) (b = a)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
Proof.
|
2017-09-01 16:56:49 +02:00
|
|
|
|
unfold Decidable.
|
2017-08-08 19:56:39 +02:00
|
|
|
|
pose (HI {|a|} {|b|} (HS a) (HS b)) as IntAB.
|
|
|
|
|
pose (HDE ({|a|} ∪ {|b|}) IntAB) as IntE.
|
2017-09-01 16:56:49 +02:00
|
|
|
|
refine (Trunc_rec _ IntE) ; intros [p | p].
|
|
|
|
|
- refine (inr(fun q => _)).
|
2017-08-08 19:56:39 +02:00
|
|
|
|
strip_truncations.
|
2017-09-01 16:56:49 +02:00
|
|
|
|
refine (transport (fun Z => a ∈ Z) p (tr idpath, tr q^)).
|
2017-08-03 15:07:53 +02:00
|
|
|
|
- strip_truncations.
|
2017-09-01 16:56:49 +02:00
|
|
|
|
destruct p as [? [t1 t2]].
|
2017-08-03 15:07:53 +02:00
|
|
|
|
strip_truncations.
|
|
|
|
|
apply (inl (tr (t2^ @ t1))).
|
|
|
|
|
Defined.
|
2017-09-24 18:34:35 +02:00
|
|
|
|
End intersect.
|