Fix the globality of an instance and simplify bfin_union a bit

This commit is contained in:
Dan Frumin 2017-09-24 18:34:35 +02:00
parent 206bf9edb6
commit bd91e18ad6
2 changed files with 6 additions and 13 deletions

View File

@ -401,7 +401,7 @@ Section kfin_bfin.
{ reflexivity. }
destruct (dec (b = b)); [ reflexivity | contradiction ]. }
Defined.
Theorem bfin_union : @closedUnion A Bfin.
Proof.
intros X Y HX HY.
@ -409,16 +409,9 @@ Section kfin_bfin.
strip_truncations.
revert fX. revert X.
induction n; intros X fX.
- destruct HY as [m fY]. strip_truncations.
exists m. apply tr.
transitivity {a : A & a Y}; [ | assumption ].
apply equiv_functor_sigma_id.
intros a.
apply equiv_iff_hprop.
* intros Ha. strip_truncations.
destruct Ha as [Ha | Ha]; [ | apply Ha ].
contradiction (fX (a;Ha)).
* intros Ha. apply tr. by right.
- rewrite (X_empty _ X fX).
rewrite (neutralL_max (Sub A)).
apply HY.
- destruct (split X n fX) as
(X' & b & HX' & HX).
assert (Bfin (X' Y)) by (by apply IHn).

View File

@ -24,7 +24,7 @@ Section sub_classes.
Variable C : (A -> hProp) -> hProp.
Context `{Univalence}.
Instance subobject_lattice : Lattice (Sub A).
Global Instance subobject_lattice : Lattice (Sub A).
Proof.
apply _.
Defined.
@ -75,4 +75,4 @@ Section intersect.
strip_truncations.
apply (inl (tr (t2^ @ t1))).
Defined.
End intersect.
End intersect.