mirror of https://github.com/nmvdw/HITs-Examples
456 lines
12 KiB
Coq
456 lines
12 KiB
Coq
Require Import HoTT.
|
||
Require Export HoTT.
|
||
Require Import FunextAxiom.
|
||
|
||
Module Export FinSet.
|
||
|
||
Section FSet.
|
||
Variable A : Type.
|
||
|
||
Private Inductive FSet : Type :=
|
||
| E : FSet
|
||
| L : A -> FSet
|
||
| U : FSet -> FSet -> FSet.
|
||
|
||
Notation "{| x |}" := (L x).
|
||
Infix "∪" := U (at level 8, right associativity).
|
||
Notation "∅" := E.
|
||
|
||
Axiom assoc : forall (x y z : FSet ),
|
||
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
||
|
||
Axiom comm : forall (x y : FSet),
|
||
x ∪ y = y ∪ x.
|
||
|
||
Axiom nl : forall (x : FSet),
|
||
∅ ∪ x = x.
|
||
|
||
Axiom nr : forall (x : FSet),
|
||
x ∪ ∅ = x.
|
||
|
||
Axiom idem : forall (x : A),
|
||
{| x |} ∪ {|x|} = {|x|}.
|
||
|
||
Axiom trunc : IsHSet FSet.
|
||
|
||
Fixpoint FSet_rec
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet)
|
||
{struct x}
|
||
: P
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
|
||
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
|
||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
|
||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
||
end) assocP commP nlP nrP idemP H.
|
||
|
||
Axiom FSet_rec_beta_assoc : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y z : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
|
||
=
|
||
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_comm : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nl : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
|
||
=
|
||
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nr : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
|
||
=
|
||
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_idem : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : A),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
|
||
(* Induction principle *)
|
||
Fixpoint FSet_ind
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet)
|
||
{struct x}
|
||
: P x
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
|
||
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
||
end) H assocP commP nlP nrP idemP.
|
||
|
||
|
||
Axiom FSet_ind_beta_assoc : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x y z : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP)
|
||
(assoc x y z)
|
||
=
|
||
(assocP x y z
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
||
).
|
||
|
||
|
||
|
||
Axiom FSet_ind_beta_comm : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x y : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP x y
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_nl : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nl x)
|
||
=
|
||
(nlP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_nr : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nr x)
|
||
=
|
||
(nrP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_idem : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : A),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
End FSet.
|
||
|
||
Parameter A : Type.
|
||
Parameter eq : A -> A -> Bool.
|
||
Parameter eq_refl: forall a:A, eq a a = true.
|
||
|
||
Arguments E {_}.
|
||
Arguments U {_} _ _.
|
||
Arguments L {_} _.
|
||
|
||
Definition isIn : A -> FSet A -> Bool.
|
||
Proof.
|
||
intros a.
|
||
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
|
||
- exact false.
|
||
- intro a'. apply (eq a a').
|
||
- apply orb.
|
||
- intros x y z. destruct x; reflexivity.
|
||
- intros x y. destruct x, y; reflexivity.
|
||
- intros x. reflexivity.
|
||
- intros x. destruct x; reflexivity.
|
||
- intros a'. destruct (eq a a'); reflexivity.
|
||
Defined.
|
||
|
||
Set Implicit Arguments.
|
||
|
||
Definition comprehension :
|
||
(A -> Bool) -> FSet A -> FSet A.
|
||
Proof.
|
||
intros P.
|
||
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
|
||
- apply E.
|
||
- intro a.
|
||
refine (if (P a) then L a else E).
|
||
- apply U.
|
||
- intros. cbv. apply assoc.
|
||
- intros. cbv. apply comm.
|
||
- intros. cbv. apply nl.
|
||
- intros. cbv. apply nr.
|
||
- intros. cbv.
|
||
destruct (P x); simpl.
|
||
+ apply idem.
|
||
+ apply nl.
|
||
Defined.
|
||
|
||
Definition intersection :
|
||
FSet A -> FSet A -> FSet A.
|
||
Proof.
|
||
intros X Y.
|
||
apply (comprehension (fun (a : A) => isIn a X) Y).
|
||
Defined.
|
||
|
||
Lemma intersection_E : forall x,
|
||
intersection E x = E.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
||
- reflexivity.
|
||
- intro a.
|
||
reflexivity.
|
||
- unfold intersection.
|
||
intros x y P Q.
|
||
cbn.
|
||
rewrite P.
|
||
rewrite Q.
|
||
apply nl.
|
||
Defined.
|
||
|
||
Theorem intersection_La : forall a x,
|
||
intersection (L a) x = if isIn a x then L a else E.
|
||
Proof.
|
||
intro a.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
||
- reflexivity.
|
||
- intro b.
|
||
admit.
|
||
- unfold intersection.
|
||
intros x y P Q.
|
||
cbn.
|
||
rewrite P.
|
||
rewrite Q.
|
||
destruct (isIn a x) ; destruct (isIn a y).
|
||
* apply idem.
|
||
* apply nr.
|
||
* apply nl.
|
||
* apply nl.
|
||
Admitted.
|
||
|
||
Theorem comprehension_or : forall ϕ ψ x,
|
||
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x) (comprehension ψ x).
|
||
Proof.
|
||
intros ϕ ψ.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
||
- cbn. symmetry ; apply nl.
|
||
- cbn. intros.
|
||
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
|
||
* apply idem.
|
||
* apply nr.
|
||
* apply nl.
|
||
* apply nl.
|
||
- simpl. intros x y P Q.
|
||
cbn.
|
||
rewrite P.
|
||
rewrite Q.
|
||
|
||
|
||
Theorem intersection_assoc : forall x y z,
|
||
intersection x (intersection y z) = intersection (intersection x y) z.
|
||
Proof.
|
||
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
|
||
- cbn.
|
||
intros y z.
|
||
rewrite intersection_E.
|
||
rewrite intersection_E.
|
||
rewrite intersection_E.
|
||
reflexivity.
|
||
- intro a.
|
||
cbn.
|
||
intros y z.
|
||
(* simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _ y) ; try (intros ; apply set_path2). *)
|
||
admit.
|
||
- unfold intersection.
|
||
intros x y P Q z z'.
|
||
cbn.
|
||
rewrite Q.
|
||
|
||
rewrite intersection_La.
|
||
rewrite intersection_La.
|
||
destruct (isIn a y).
|
||
* rewrite intersection_La.
|
||
destruct (isIn a (intersection y z)).
|
||
+ reflexivity.
|
||
+
|
||
*
|
||
destruct (isIn a (intersection y z)).
|
||
|