HITs-Examples/FiniteSets/definition.v

187 lines
4.6 KiB
Coq
Raw Normal View History

2017-05-23 16:30:31 +02:00
Require Import HoTT.
Require Export HoTT.
Module Export definition.
Section FSet.
Variable A : Type.
Private Inductive FSet : Type :=
| E : FSet
| L : A -> FSet
| U : FSet -> FSet -> FSet.
Notation "{| x |}" := (L x).
Infix "" := U (at level 8, right associativity).
Notation "" := E.
Axiom assoc : forall (x y z : FSet ),
x (y z) = (x y) z.
Axiom comm : forall (x y : FSet),
x y = y x.
Axiom nl : forall (x : FSet),
x = x.
Axiom nr : forall (x : FSet),
x = x.
Axiom idem : forall (x : A),
{| x |} {|x|} = {|x|}.
Axiom trunc : IsHSet FSet.
End FSet.
2017-05-23 16:30:31 +02:00
Section FSet_induction.
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Variable A: Type.
Variable (P : FSet A -> Type).
Variable (H : forall a : FSet A, IsHSet (P a)).
Variable (eP : P E).
Variable (lP : forall a: A, P (L a)).
Variable (uP : forall (x y: FSet A), P x -> P y -> P (U x y)).
Variable (assocP : forall (x y z : FSet A)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz)).
Variable (commP : forall (x y: FSet A) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px).
Variable (nlP : forall (x : FSet A) (px: P x),
nl x # uP E x eP px = px).
Variable (nrP : forall (x : FSet A) (px: P x),
nr x # uP x E px eP = px).
Variable (idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x).
(* Induction principle *)
Fixpoint FSet_ind
(x : FSet A)
{struct x}
: P x
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
(FSet_ind y)
(FSet_ind z)
end) H assocP commP nlP nrP idemP.
Axiom FSet_ind_beta_assoc : forall (x y z : FSet A),
apD FSet_ind (assoc x y z) =
(assocP x y z (FSet_ind x) (FSet_ind y) (FSet_ind z)).
Axiom FSet_ind_beta_comm : forall (x y : FSet A),
apD FSet_ind (comm x y) = (commP x y (FSet_ind x) (FSet_ind y)).
Axiom FSet_ind_beta_nl : forall (x : FSet A),
apD FSet_ind (nl x) = (nlP x (FSet_ind x)).
Axiom FSet_ind_beta_nr : forall (x : FSet A),
apD FSet_ind (nr x) = (nrP x (FSet_ind x)).
Axiom FSet_ind_beta_idem : forall (x : A), apD FSet_ind (idem x) = idemP x.
End FSet_induction.
2017-05-23 16:30:31 +02:00
Section FSet_recursion.
Variable A : Type.
Variable P : Type.
Variable H: IsHSet P.
Variable e : P.
Variable l : A -> P.
Variable u : P -> P -> P.
Variable assocP : forall (x y z : P), u x (u y z) = u (u x y) z.
Variable commP : forall (x y : P), u x y = u y x.
Variable nlP : forall (x : P), u e x = x.
Variable nrP : forall (x : P), u x e = x.
Variable idemP : forall (x : A), u (l x) (l x) = l x.
Definition FSet_rec : FSet A -> P.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((transport_const _ _) @ _)) ; cbn.
- apply e.
- apply l.
- intros x y ; apply u.
- apply assocP.
- apply commP.
- apply nlP.
- apply nrP.
- apply idemP.
Defined.
Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
ap FSet_rec (assoc A x y z)
=
assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (assoc A x y z) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_assoc.
Defined.
Definition FSet_rec_beta_comm : forall (x y : FSet A),
ap FSet_rec (comm A x y)
=
commP (FSet_rec x) (FSet_rec y).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (comm A x y) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_comm.
Defined.
Definition FSet_rec_beta_nl : forall (x : FSet A),
ap FSet_rec (nl A x)
=
nlP (FSet_rec x).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (nl A x) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_nl.
Defined.
Definition FSet_rec_beta_nr : forall (x : FSet A),
ap FSet_rec (nr A x)
=
nrP (FSet_rec x).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (nr A x) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_nr.
Defined.
Definition FSet_rec_beta_idem : forall (a : A),
ap FSet_rec (idem A a)
=
idemP a.
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (idem A a) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_idem.
Defined.
End FSet_recursion.
2017-05-23 16:30:31 +02:00
End definition.