HITs-Examples/FiniteSets/properties.v

457 lines
12 KiB
Coq
Raw Normal View History

Require Import HoTT HitTactics.
Require Export definition operations Ext.
2017-05-23 16:30:31 +02:00
Section properties.
2017-05-23 16:30:31 +02:00
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
(** isIn properties *)
2017-05-23 16:30:31 +02:00
Lemma isIn_singleton_eq (a b: A) : isIn a (L b) = true -> a = b.
Proof. unfold isIn. simpl.
2017-05-23 16:30:31 +02:00
destruct (dec (a = b)). intro. apply p.
intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_empty_false (a: A) : isIn a E = true -> Empty.
Proof.
cbv. intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_union (a: A) (X Y: FSet A) :
isIn a (U X Y) = (isIn a X || isIn a Y)%Bool.
Proof. reflexivity. Qed.
(** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun a => isIn a E) Y = E.
Proof.
hrecursion Y; try (intros; apply set_path2).
- cbn. reflexivity.
- cbn. reflexivity.
- intros x y IHa IHb.
cbn.
rewrite IHa.
rewrite IHb.
apply union_idem.
Defined.
2017-05-23 16:30:31 +02:00
Theorem comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
hinduction; try (intros; apply set_path2).
- cbn. apply (union_idem _)^.
2017-05-23 16:30:31 +02:00
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply union_idem.
2017-05-23 16:30:31 +02:00
* apply nr.
* apply nl.
* apply union_idem.
2017-05-23 16:30:31 +02:00
- simpl. intros x y P Q.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc (comprehension ψ x)).
rewrite (comm (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
Theorem comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.
2017-05-23 16:30:31 +02:00
Proof.
intros ϕ.
hrecursion; try (intros ; apply set_path2) ; cbn.
- apply union_idem.
- intro a.
destruct (ϕ a).
* apply union_idem.
* apply nl.
- intros X Y P Q.
rewrite assoc.
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
rewrite (comm (comprehension ϕ Y) X).
2017-05-23 16:30:31 +02:00
rewrite assoc.
rewrite P.
rewrite <- assoc.
2017-05-23 16:30:31 +02:00
rewrite Q.
reflexivity.
Defined.
(** intersection properties *)
2017-05-23 16:30:31 +02:00
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
hinduction;
2017-05-23 16:30:31 +02:00
try (intros ; apply set_path2).
- reflexivity.
- intro a.
reflexivity.
- intros x y P Q.
cbn.
2017-05-23 16:30:31 +02:00
rewrite P.
rewrite Q.
apply union_idem.
2017-05-23 16:30:31 +02:00
Defined.
Lemma intersection_0r (X: FSet A): intersection X E = E.
Proof. exact idpath. Defined.
2017-05-23 16:30:31 +02:00
2017-05-23 22:58:35 +02:00
Theorem intersection_La : forall (a : A) (X : FSet A),
intersection (L a) X = if isIn a X then L a else E.
Proof.
intro a.
hinduction; try (intros ; apply set_path2).
2017-05-23 22:58:35 +02:00
- reflexivity.
- intro b.
cbn.
destruct (dec (a = b)) as [p|np].
* rewrite p.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)); [|reflexivity].
by contradiction np.
2017-05-23 22:58:35 +02:00
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y).
* apply idem.
* apply nr.
* apply nl.
* apply nl.
Defined.
Lemma intersection_comm X Y: intersection X Y = intersection Y X.
Proof.
hrecursion X; try (intros; apply set_path2).
- apply intersection_0l.
- intro a.
hrecursion Y; try (intros; apply set_path2).
+ reflexivity.
+ intros b.
destruct (dec (a = b)) as [pa|npa].
* rewrite pa.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)) as [pb|]; [|reflexivity].
by contradiction npa.
+ intros Y1 Y2 IH1 IH2.
rewrite IH1.
rewrite IH2.
symmetry.
apply (comprehension_or (fun a => isIn a Y1) (fun a => isIn a Y2) (L a)).
- intros X1 X2 IH1 IH2.
rewrite <- IH1.
rewrite <- IH2.
unfold intersection; simpl.
apply comprehension_or.
Defined.
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
Proof.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro a.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X Y IHX IHY.
f_ap;
unfold intersection in *.
+ transitivity (U (comprehension (fun a => isIn a X) X) (comprehension (fun a => isIn a Y) X)).
apply comprehension_or.
rewrite IHX.
rewrite (comm X).
apply comprehension_subset.
+ transitivity (U (comprehension (fun a => isIn a X) Y) (comprehension (fun a => isIn a Y) Y)).
apply comprehension_or.
rewrite IHY.
apply comprehension_subset.
Defined.
(** assorted lattice laws *)
2017-05-24 18:28:24 +02:00
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A,
intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
2017-05-23 23:24:22 +02:00
Proof.
hinduction; try (intros ; apply set_path2) ; cbn.
2017-05-23 23:24:22 +02:00
- symmetry ; apply nl.
- intros b.
destruct (dec (b = a)) ; cbn.
* destruct (isIn b z).
+ rewrite union_idem.
reflexivity.
+ rewrite nr.
reflexivity.
* rewrite nl ; reflexivity.
- intros X1 X2 P Q.
rewrite P. rewrite Q.
2017-05-23 23:24:22 +02:00
rewrite <- assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X1)).
rewrite <- assoc.
rewrite assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X2)).
reflexivity.
Defined.
Theorem distributive_intersection_U (X1 X2 Y : FSet A) :
2017-05-23 23:24:22 +02:00
intersection (U X1 X2) Y = U (intersection X1 Y) (intersection X2 Y).
Proof.
hinduction X1; try (intros ; apply set_path2) ; cbn.
2017-05-23 23:24:22 +02:00
- rewrite intersection_0l.
rewrite nl.
rewrite nl.
reflexivity.
- intro a.
rewrite intersection_La.
2017-05-24 12:10:39 +02:00
rewrite distributive_La.
2017-05-23 23:24:22 +02:00
rewrite intersection_La.
reflexivity.
- intros Z1 Z2 P Q.
unfold intersection in *.
cbn.
rewrite comprehension_or.
rewrite comprehension_or.
reflexivity.
Defined.
2017-05-23 22:58:35 +02:00
Theorem intersection_isIn : forall a (x y: FSet A),
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
Proof.
intros a x y.
hinduction x; try (intros ; apply set_path2) ; cbn.
2017-05-23 22:58:35 +02:00
- rewrite intersection_0l.
reflexivity.
- intro b.
rewrite intersection_La.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b y).
+ cbn.
destruct (dec (b = b)); [reflexivity|].
by contradiction n.
2017-05-23 22:58:35 +02:00
+ reflexivity.
* destruct (isIn b y).
+ cbn.
destruct (dec (a = b)); [|reflexivity].
by contradiction n.
2017-05-23 22:58:35 +02:00
+ reflexivity.
- intros X1 X2 P Q.
2017-05-24 12:10:39 +02:00
rewrite distributive_intersection_U.
2017-05-23 22:58:35 +02:00
cbn.
rewrite P.
rewrite Q.
2017-05-24 18:28:24 +02:00
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ;
reflexivity.
2017-05-23 22:58:35 +02:00
Defined.
2017-05-23 16:30:31 +02:00
2017-05-23 22:58:35 +02:00
Theorem intersection_assoc (X Y Z: FSet A) :
intersection X (intersection Y Z) = intersection (intersection X Y) Z.
Proof.
hinduction X; try (intros ; apply set_path2).
2017-05-23 22:58:35 +02:00
- cbn.
rewrite intersection_0l.
rewrite intersection_0l.
rewrite intersection_0l.
2017-05-23 16:30:31 +02:00
reflexivity.
2017-05-23 22:58:35 +02:00
- intros a.
2017-05-23 16:30:31 +02:00
cbn.
rewrite intersection_La.
rewrite intersection_La.
rewrite intersection_isIn.
2017-05-23 22:58:35 +02:00
destruct (isIn a Y).
2017-05-23 16:30:31 +02:00
* rewrite intersection_La.
2017-05-23 22:58:35 +02:00
destruct (isIn a Z).
2017-05-23 16:30:31 +02:00
+ reflexivity.
+ reflexivity.
2017-05-23 22:58:35 +02:00
* rewrite intersection_0l.
2017-05-23 16:30:31 +02:00
reflexivity.
- unfold intersection. cbn.
2017-05-23 22:58:35 +02:00
intros X1 X2 P Q.
2017-05-23 16:30:31 +02:00
rewrite comprehension_or.
rewrite P.
rewrite Q.
rewrite comprehension_or.
cbn.
rewrite comprehension_or.
reflexivity.
2017-05-23 22:58:35 +02:00
Defined.
2017-05-23 21:31:45 +02:00
Theorem comprehension_all : forall (X : FSet A),
comprehension (fun a => isIn a X) X = X.
Proof.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro a.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X1 X2 P Q.
f_ap; (etransitivity; [ apply comprehension_or |]).
rewrite P. rewrite (comm X1).
apply comprehension_subset.
rewrite Q.
apply comprehension_subset.
Defined.
2017-05-23 16:30:31 +02:00
Theorem distributive_U_int (X1 X2 Y : FSet A) :
U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y).
Proof.
hinduction X1; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
unfold intersection.
rewrite comprehension_all.
pose (intersection_comm Y X2).
unfold intersection in p.
rewrite p.
rewrite comprehension_subset.
reflexivity.
- intros.
assert (Y = intersection (U (L a) Y) Y) as HY.
{ unfold intersection. symmetry.
transitivity (U (comprehension (fun x => isIn x (L a)) Y) (comprehension (fun x => isIn x Y) Y)).
apply comprehension_or.
rewrite comprehension_all.
apply comprehension_subset. }
rewrite <- HY.
admit.
- unfold intersection.
intros Z1 Z2 P Q.
rewrite comprehension_or.
2017-05-24 18:28:24 +02:00
assert (U (U (comprehension (fun a : A => isIn a Z1) X2)
(comprehension (fun a : A => isIn a Z2) X2))
Y = U (U (comprehension (fun a : A => isIn a Z1) X2)
(comprehension (fun a : A => isIn a Z2) X2))
(U Y Y)).
rewrite (union_idem Y).
reflexivity.
rewrite X.
rewrite <- assoc.
rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
rewrite Q.
cbn.
2017-05-24 18:28:24 +02:00
rewrite
(comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
rewrite assoc.
rewrite P.
rewrite <- assoc. cbn.
rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
rewrite <- assoc.
rewrite assoc.
enough (C : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) X2)
2017-05-24 18:28:24 +02:00
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2))
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) X2)).
rewrite C.
enough (D : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)
2017-05-24 18:28:24 +02:00
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y))
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) Y)).
rewrite D.
reflexivity.
2017-05-24 12:10:39 +02:00
* repeat (rewrite comprehension_or).
rewrite <- assoc.
rewrite (comm (comprehension (fun a : A => isIn a Y) Y)).
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) Y)).
rewrite union_idem.
rewrite assoc.
reflexivity.
* repeat (rewrite comprehension_or).
rewrite <- assoc.
rewrite (comm (comprehension (fun a : A => isIn a Y) X2)).
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) X2)).
rewrite union_idem.
rewrite assoc.
reflexivity.
Admitted.
2017-05-23 21:31:45 +02:00
2017-05-24 12:10:39 +02:00
Theorem absorb_0 (X Y : FSet A) : U X (intersection X Y) = X.
Proof.
hinduction X; try (intros ; apply set_path2) ; cbn.
2017-05-24 12:10:39 +02:00
- rewrite nl.
apply intersection_0l.
- intro a.
rewrite intersection_La.
destruct (isIn a Y).
* apply union_idem.
* apply nr.
- intros X1 X2 P Q.
rewrite distributive_intersection_U.
rewrite <- assoc.
rewrite (comm X2).
rewrite assoc.
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite (comm _ X2).
rewrite Q.
reflexivity.
Defined.
Theorem absorb_1 (X Y : FSet A) : intersection X (U X Y) = X.
Proof.
hrecursion X; try (intros ; apply set_path2).
2017-05-24 12:10:39 +02:00
- cbn.
rewrite nl.
apply comprehension_false.
- intro a.
rewrite intersection_La.
destruct (dec (a = a)).
* destruct (isIn a Y).
+ apply union_idem.
+ apply nr.
* contradiction (n idpath).
- intros X1 X2 P Q.
cbn in *.
symmetry.
rewrite <- P.
rewrite <- Q.
Admitted.
2017-05-24 14:52:52 +02:00
Theorem union_isIn (X Y : FSet A) (a : A) : isIn a (U X Y) = orb (isIn a X) (isIn a Y).
Proof.
reflexivity.
Defined.
2017-05-24 18:28:24 +02:00
Ltac solve :=
let x := fresh in
repeat (intro x ; destruct x)
; compute
; auto
; try contradiction.
Ltac simplify_isIn :=
repeat (rewrite ?intersection_isIn ;
rewrite ?union_isIn).
Lemma ext `{Funext} : forall S T, (forall a, isIn a S = isIn a T) -> S = T.
Proof.
intros.
destruct (fset_ext S T).
destruct equiv_isequiv.
apply equiv_inv.
apply X.
Defined.
Ltac toBool :=
intros ; apply ext ; intros ; simplify_isIn.
Lemma andb_comm : forall x y, andb x y = andb y x.
Proof.
solve.
Defined.
Lemma intersectioncomm `{Funext} : forall x y, intersection x y = intersection y x.
Proof.
toBool. apply andb_comm.
Defined.
End properties.