Port the FiniteSets library to HitTactics

This commit is contained in:
Dan Frumin 2017-05-24 13:54:00 +02:00
parent 25d1e1c969
commit 826b6ba233
5 changed files with 160 additions and 251 deletions

View File

@ -1,5 +1,5 @@
-R . "" COQC = hoqc COQDEP = hoqdep
-R ../prelude ""
definition.v
operations.v
properties.v

View File

@ -1,7 +1,7 @@
Require Import HoTT.
Require Export HoTT.
Require Import HitTactics.
Module Export definition.
Module Export FSet.
Section FSet.
Variable A : Type.
@ -34,7 +34,6 @@ Axiom trunc : IsHSet FSet.
End FSet.
Section FSet_induction.
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
@ -43,6 +42,8 @@ Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Section FSet_induction.
Variable A: Type.
Variable (P : FSet A -> Type).
Variable (H : forall a : FSet A, IsHSet (P a)).
@ -123,65 +124,69 @@ simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; simple refine ((t
Defined.
Definition FSet_rec_beta_assoc : forall (x y z : FSet A),
ap FSet_rec (assoc A x y z)
ap FSet_rec (assoc x y z)
=
assocP (FSet_rec x) (FSet_rec y) (FSet_rec z).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (assoc A x y z) _)).
eapply (cancelL (transport_const (assoc x y z) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_assoc.
Defined.
Definition FSet_rec_beta_comm : forall (x y : FSet A),
ap FSet_rec (comm A x y)
ap FSet_rec (comm x y)
=
commP (FSet_rec x) (FSet_rec y).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (comm A x y) _)).
eapply (cancelL (transport_const (comm x y) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_comm.
Defined.
Definition FSet_rec_beta_nl : forall (x : FSet A),
ap FSet_rec (nl A x)
ap FSet_rec (nl x)
=
nlP (FSet_rec x).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (nl A x) _)).
eapply (cancelL (transport_const (nl x) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_nl.
Defined.
Definition FSet_rec_beta_nr : forall (x : FSet A),
ap FSet_rec (nr A x)
ap FSet_rec (nr x)
=
nrP (FSet_rec x).
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (nr A x) _)).
eapply (cancelL (transport_const (nr x) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_nr.
Defined.
Definition FSet_rec_beta_idem : forall (a : A),
ap FSet_rec (idem A a)
ap FSet_rec (idem a)
=
idemP a.
Proof.
intros.
unfold FSet_rec.
eapply (cancelL (transport_const (idem A a) _)).
eapply (cancelL (transport_const (idem a) _)).
simple refine ((apD_const _ _)^ @ _).
apply FSet_ind_beta_idem.
Defined.
End FSet_recursion.
End definition.
Instance FSet_recursion A : HitRecursion (FSet A) := {
indTy := _; recTy := _;
H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
End FSet.

View File

@ -1,35 +1,23 @@
Require Import HoTT.
Require Export HoTT.
Require Import HoTT HitTactics.
Require Import definition.
(*Set Implicit Arguments.*)
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Section operations.
Variable A : Type.
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
Definition deceq (x y : A) :=
if dec (x = y) then true else false.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
Definition isIn : A -> FSet A -> Bool.
Proof.
intros a.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
hrecursion.
- exact false.
- intro a'. apply (deceq a a').
- intro a'. destruct (dec (a = a')); [exact true | exact false].
- apply orb.
- intros x y z. destruct x; reflexivity.
- intros x y. destruct x, y; reflexivity.
- intros x. reflexivity.
- intros x. destruct x; reflexivity.
- intros a'. destruct (deceq a a'); reflexivity.
- intros x y z. compute. destruct x; reflexivity.
- intros x y. compute. destruct x, y; reflexivity.
- intros x. compute. reflexivity.
- intros x. compute. destruct x; reflexivity.
- intros a'. compute. destruct (A_deceq a a'); reflexivity.
Defined.
Infix "" := isIn (at level 9, right associativity).
@ -38,7 +26,7 @@ Definition comprehension :
(A -> Bool) -> FSet A -> FSet A.
Proof.
intros P.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
hrecursion.
- apply E.
- intro a.
refine (if (P a) then L a else E).
@ -60,4 +48,4 @@ intros X Y.
apply (comprehension (fun (a : A) => isIn a X) Y).
Defined.
End operations.
End operations.

View File

@ -1,56 +1,33 @@
Require Import HoTT.
Require Export HoTT.
Require Import definition.
Require Import operations.
Require Import HoTT HitTactics.
Require Import definition operations.
Section properties.
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Arguments assoc {_} _ _ _.
Arguments comm {_} _ _.
Arguments nl {_} _.
Arguments nr {_} _.
Arguments idem {_} _.
Arguments isIn {_} _ _.
Arguments comprehension {_} _ _.
Arguments intersection {_} _ _.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
Variable A : Type.
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
Definition deceq (x y : A) :=
if dec (x = y) then true else false.
Theorem deceq_sym : forall x y, operations.deceq A x y = operations.deceq A y x.
(** union properties *)
Theorem union_idem : forall x: FSet A, U x x = x.
Proof.
intros x y.
unfold operations.deceq.
destruct (dec (x = y)) ; destruct (dec (y = x)) ; cbn.
- reflexivity.
- pose (n (p^)) ; contradiction.
- pose (n (p^)) ; contradiction.
- reflexivity.
Defined.
Lemma comprehension_false: forall Y: FSet A,
comprehension (fun a => isIn a E) Y = E.
Proof.
simple refine (FSet_ind _ _ _ _ _ _ _ _ _ _ _);
try (intros; apply set_path2).
- cbn. reflexivity.
- cbn. reflexivity.
- intros x y IHa IHb.
cbn.
rewrite IHa.
rewrite IHb.
rewrite nl.
hinduction;
try (intros ; apply set_path2) ; cbn.
- apply nl.
- apply idem.
- intros x y P Q.
rewrite assoc.
rewrite (comm x y).
rewrite <- (assoc y x x).
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
rewrite Q.
reflexivity.
Defined.
(** isIn properties *)
Lemma isIn_singleton_eq (a b: A) : isIn a (L b) = true -> a = b.
Proof. unfold isIn. simpl. unfold operations.deceq.
Proof. unfold isIn. simpl.
destruct (dec (a = b)). intro. apply p.
intro X.
contradiction (false_ne_true X).
@ -66,13 +43,26 @@ Lemma isIn_union (a: A) (X Y: FSet A) :
isIn a (U X Y) = (isIn a X || isIn a Y)%Bool.
Proof. reflexivity. Qed.
(** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun a => isIn a E) Y = E.
Proof.
hrecursion Y; try (intros; apply set_path2).
- cbn. reflexivity.
- cbn. reflexivity.
- intros x y IHa IHb.
cbn.
rewrite IHa.
rewrite IHb.
rewrite nl.
reflexivity.
Defined.
Theorem comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
hinduction; try (intros; apply set_path2).
- cbn. symmetry ; apply nl.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
@ -92,26 +82,31 @@ simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
reflexivity.
Defined.
Theorem union_idem : forall x: FSet A, U x x = x.
Theorem comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ;
try (intros ; apply set_path2) ; cbn.
intros ϕ.
hrecursion; try (intros ; apply set_path2) ; cbn.
- apply nl.
- apply idem.
- intros x y P Q.
- intro a.
destruct (ϕ a).
* apply union_idem.
* apply nl.
- intros X Y P Q.
rewrite assoc.
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
rewrite (comm (comprehension ϕ Y) X).
rewrite assoc.
rewrite (comm x y).
rewrite <- (assoc y x x).
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
rewrite <- assoc.
rewrite Q.
reflexivity.
Defined.
(** intersection properties *)
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ;
hinduction;
try (intros ; apply set_path2).
- reflexivity.
- intro a.
@ -124,21 +119,23 @@ try (intros ; apply set_path2).
apply nl.
Defined.
Definition intersection_0r (X: FSet A): intersection X E = E := idpath.
Lemma intersection_0r (X: FSet A): intersection X E = E.
Proof. exact idpath. Defined.
Theorem intersection_La : forall (a : A) (X : FSet A),
intersection (L a) X = if isIn a X then L a else E.
Proof.
intro a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro b.
cbn.
rewrite deceq_sym.
unfold operations.deceq.
destruct (dec (a = b)).
* rewrite p ; reflexivity.
* reflexivity.
destruct (dec (a = b)) as [p|np].
* rewrite p.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)); [|reflexivity].
by contradiction np.
- unfold intersection.
intros x y P Q.
cbn.
@ -151,12 +148,59 @@ simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
* apply nl.
Defined.
Lemma intersection_comm X Y: intersection X Y = intersection Y X.
Proof.
hrecursion X; try (intros; apply set_path2).
- cbn. unfold intersection. apply comprehension_false.
- cbn. unfold intersection. intros a.
hrecursion Y; try (intros; apply set_path2).
+ cbn. reflexivity.
+ cbn. intros b.
destruct (dec (a = b)) as [pa|npa].
* rewrite pa.
destruct (dec (b = b)) as [|nb]; [reflexivity|].
by contradiction nb.
* destruct (dec (b = a)) as [pb|]; [|reflexivity].
by contradiction npa.
+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
rewrite IH1.
rewrite IH2.
symmetry.
apply (comprehension_or (fun a => isIn a Y1) (fun a => isIn a Y2) (L a)).
- intros X1 X2 IH1 IH2.
cbn.
unfold intersection in *.
rewrite <- IH1.
rewrite <- IH2.
apply comprehension_or.
Defined.
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
Proof.
hinduction; try (intros; apply set_path2).
- reflexivity.
- intro a.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X Y IHX IHY.
unfold intersection in *.
rewrite comprehension_or.
rewrite comprehension_or.
rewrite IHX.
rewrite IHY.
rewrite comprehension_subset.
rewrite (comm X).
rewrite comprehension_subset.
reflexivity.
Defined.
(** assorted lattice laws *)
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A, intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
hinduction; try (intros ; apply set_path2) ; cbn.
- symmetry ; apply nl.
- intros b.
unfold operations.deceq.
destruct (dec (b = a)) ; cbn.
* destruct (isIn b z).
+ rewrite union_idem.
@ -165,8 +209,7 @@ simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2)
reflexivity.
* rewrite nl ; reflexivity.
- intros X1 X2 P Q.
rewrite comprehension_or.
rewrite comprehension_or.
rewrite P. rewrite Q.
rewrite <- assoc.
rewrite (comm (comprehension (fun a0 : A => isIn a0 z) X1)).
rewrite <- assoc.
@ -178,9 +221,7 @@ Defined.
Theorem distributive_intersection_U (X1 X2 Y : FSet A) :
intersection (U X1 X2) Y = U (intersection X1 Y) (intersection X2 Y).
Proof.
simple refine (FSet_ind A
(fun z => intersection (U z X2) Y = U (intersection z Y) (intersection X2 Y))
_ _ _ _ _ _ _ _ _ X1) ; try (intros ; apply set_path2) ; cbn.
hinduction X1; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
rewrite nl.
@ -197,32 +238,27 @@ simple refine (FSet_ind A
rewrite comprehension_or.
reflexivity.
Defined.
Theorem intersection_isIn : forall a (x y: FSet A),
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
Proof.
intros a x y.
simple refine (FSet_ind A (fun z => isIn a (intersection z y) = andb (isIn a z) (isIn a y)) _ _ _ _ _ _ _ _ _ x) ; try (intros ; apply set_path2) ; cbn.
hinduction x; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
reflexivity.
- intro b.
rewrite intersection_La.
unfold operations.deceq.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b y).
+ cbn.
unfold operations.deceq.
destruct (dec (b = b)).
{ reflexivity. }
{ pose (n idpath). contradiction. }
destruct (dec (b = b)); [reflexivity|].
by contradiction n.
+ reflexivity.
* destruct (isIn b y).
+ cbn.
unfold operations.deceq.
destruct (dec (a = b)).
{ pose (n p). contradiction. }
{ reflexivity. }
destruct (dec (a = b)); [|reflexivity].
by contradiction n.
+ reflexivity.
- intros X1 X2 P Q.
rewrite distributive_intersection_U.
@ -232,76 +268,12 @@ simple refine (FSet_ind A (fun z => isIn a (intersection z y) = andb (isIn a z)
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ; reflexivity.
Defined.
Lemma intersection_comm (X Y: FSet A): intersection X Y = intersection Y X.
Proof.
(*
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _ X) ;
try (intros; apply set_path2).
- cbn. unfold intersection. apply comprehension_false.
- cbn. unfold intersection. intros a.
hrecursion Y; try (intros; apply set_path2).
+ cbn. reflexivity.
+ cbn. intros.
destruct (dec (a0 = a)).
rewrite p. destruct (dec (a=a)).
reflexivity.
contradiction n.
reflexivity.
destruct (dec (a = a0)).
contradiction n. apply p^. reflexivity.
+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
rewrite IH1.
rewrite IH2.
apply (comprehension_union (L a)).
- intros X1 X2 IH1 IH2.
cbn.
unfold intersection in *.
rewrite <- IH1.
rewrite <- IH2. symmetry.
apply comprehension_union.
Defined.*)
Admitted.
Lemma comprehension_union (X Y Z: FSet A) :
U (comprehension (fun a => isIn a Y) X)
(comprehension (fun a => isIn a Z) X) =
comprehension (fun a => isIn a (U Y Z)) X.
Proof.
Admitted.
(*
hrecursion X; try (intros; apply set_path2).
- cbn. apply nl.
- cbn. intro a.
destruct (isIn a Y); simpl;
destruct (isIn a Z); simpl.
apply idem.
apply nr.
apply nl.
apply nl.
- cbn. intros X1 X2 IH1 IH2.
rewrite assoc.
rewrite (comm _ (comprehension (fun a : A => isIn a Y) X1)
(comprehension (fun a : A => isIn a Y) X2)).
rewrite <- (assoc _
(comprehension (fun a : A => isIn a Y) X2)
(comprehension (fun a : A => isIn a Y) X1)
(comprehension (fun a : A => isIn a Z) X1)
).
rewrite IH1.
rewrite comm.
rewrite assoc.
rewrite (comm _ (comprehension (fun a : A => isIn a Z) X2) _).
rewrite IH2.
apply comm.
Defined.*)
Theorem intersection_assoc (X Y Z: FSet A) :
intersection X (intersection Y Z) = intersection (intersection X Y) Z.
Proof.
simple refine
(FSet_ind A
(fun z => intersection z (intersection Y Z) = intersection (intersection z Y) Z)
_ _ _ _ _ _ _ _ _ X) ; try (intros ; apply set_path2).
hinduction X; try (intros ; apply set_path2).
- cbn.
rewrite intersection_0l.
rewrite intersection_0l.
@ -330,56 +302,12 @@ simple refine
reflexivity.
Defined.
Theorem comprehension_subset : forall ϕ (X : FSet A),
U (comprehension ϕ X) X = X.
Proof.
intros ϕ.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- apply nl.
- intro a.
destruct (ϕ a).
* apply union_idem.
* apply nl.
- intros X Y P Q.
rewrite assoc.
rewrite <- (assoc (comprehension ϕ X) (comprehension ϕ Y) X).
rewrite (comm (comprehension ϕ Y) X).
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite Q.
reflexivity.
Defined.
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- reflexivity.
- intro a.
unfold operations.deceq.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X Y IHX IHY.
cbn in *.
rewrite comprehension_or.
rewrite comprehension_or.
unfold intersection in *.
rewrite IHX.
rewrite IHY.
rewrite comprehension_subset.
rewrite (comm X).
rewrite comprehension_subset.
reflexivity.
Defined.
Theorem comprehension_all : forall (X : FSet A),
comprehension (fun a => isIn a X) X = X.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro a.
unfold operations.deceq.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
@ -398,22 +326,20 @@ Defined.
Theorem distributive_U_int (X1 X2 Y : FSet A) :
U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y).
Proof.
simple refine (FSet_ind A
(fun z => U (intersection z X2) Y = intersection (U z Y) (U X2 Y))
_ _ _ _ _ _ _ _ _ X1) ; try (intros ; apply set_path2) ; cbn.
hinduction X1; try (intros ; apply set_path2) ; cbn.
- rewrite intersection_0l.
rewrite nl.
unfold intersection.
rewrite comprehension_all.
pose (intersection_comm Y X2).
unfold intersection in p.
rewrite p.
rewrite comprehension_subset.
reflexivity.
- intros.
- intros. unfold intersection. (* TODO isIn is simplified too much *)
rewrite comprehension_or.
rewrite comprehension_or.
rewrite intersection_La.
unfold operations.deceq.
(* rewrite intersection_La. *)
admit.
- unfold intersection.
cbn.
@ -445,19 +371,13 @@ simple refine (FSet_ind A
rewrite D.
reflexivity.
* repeat (rewrite comprehension_or).
rewrite comprehension_or.
rewrite comprehension_or.
rewrite comprehension_or.
rewrite <- assoc.
rewrite (comm (comprehension (fun a : A => isIn a Y) Y)).
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) Y)).
rewrite union_idem.
rewrite assoc.
reflexivity.
* rewrite comprehension_or.
rewrite comprehension_or.
rewrite comprehension_or.
rewrite comprehension_or.
* repeat (rewrite comprehension_or).
rewrite <- assoc.
rewrite (comm (comprehension (fun a : A => isIn a Y) X2)).
rewrite <- (assoc (comprehension (fun a : A => isIn a Z2) X2)).
@ -468,9 +388,7 @@ Admitted.
Theorem absorb_0 (X Y : FSet A) : U X (intersection X Y) = X.
Proof.
simple refine (FSet_ind A
(fun z => U z (intersection z Y) = z)
_ _ _ _ _ _ _ _ _ X) ; try (intros ; apply set_path2) ; cbn.
hinduction X; try (intros ; apply set_path2) ; cbn.
- rewrite nl.
apply intersection_0l.
- intro a.
@ -493,15 +411,11 @@ Defined.
Theorem absorb_1 (X Y : FSet A) : intersection X (U X Y) = X.
Proof.
simple refine (FSet_ind A
(fun z => intersection z (U z Y) = z)
_ _ _ _ _ _ _ _ _ X) ; try (intros ; apply set_path2).
hrecursion X; try (intros ; apply set_path2).
- cbn.
rewrite nl.
apply comprehension_false.
- intro a.
simpl.
unfold operations.deceq.
rewrite intersection_La.
destruct (dec (a = a)).
* destruct (isIn a Y).
@ -513,4 +427,6 @@ simple refine (FSet_ind A
symmetry.
rewrite <- P.
rewrite <- Q.
Admitted.
End properties.