2017-09-22 17:24:53 +02:00
|
|
|
|
Require Import HoTT HitTactics.
|
|
|
|
|
Require Export FSets lattice_examples.
|
|
|
|
|
|
|
|
|
|
Section quantifiers.
|
|
|
|
|
Context {A : Type} `{Univalence}.
|
|
|
|
|
Variable (P : A -> hProp).
|
|
|
|
|
|
|
|
|
|
Definition all : FSet A -> hProp.
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction.
|
|
|
|
|
- apply Unit_hp.
|
|
|
|
|
- apply P.
|
|
|
|
|
- intros X Y.
|
|
|
|
|
apply (BuildhProp (X * Y)).
|
|
|
|
|
- eauto with lattice_hints typeclass_instances.
|
|
|
|
|
- eauto with lattice_hints typeclass_instances.
|
|
|
|
|
- intros.
|
|
|
|
|
apply path_trunctype ; apply prod_unit_l.
|
|
|
|
|
- intros.
|
|
|
|
|
apply path_trunctype ; apply prod_unit_r.
|
|
|
|
|
- eauto with lattice_hints typeclass_instances.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma all_intro X : forall (HX : forall x, x ∈ X -> P x), all X.
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction X ; try (intros ; apply path_ishprop).
|
|
|
|
|
- intros.
|
|
|
|
|
apply tt.
|
|
|
|
|
- intros.
|
|
|
|
|
apply (HX a (tr idpath)).
|
|
|
|
|
- intros X1 X2 HX1 HX2 Hmem.
|
|
|
|
|
split.
|
|
|
|
|
* apply HX1.
|
|
|
|
|
intros a Ha.
|
|
|
|
|
refine (Hmem a (tr _)).
|
|
|
|
|
apply (inl Ha).
|
|
|
|
|
* apply HX2.
|
|
|
|
|
intros a Ha.
|
|
|
|
|
refine (Hmem a (tr _)).
|
|
|
|
|
apply (inr Ha).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma all_elim X a : all X -> (a ∈ X) -> P a.
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction X ; try (intros ; apply path_ishprop).
|
|
|
|
|
- contradiction.
|
|
|
|
|
- intros b Hmem Heq.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
rewrite Heq.
|
|
|
|
|
apply Hmem.
|
|
|
|
|
- intros X1 X2 HX1 HX2 [Hall1 Hall2] Hmem.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Hmem as [t | t].
|
|
|
|
|
* apply (HX1 Hall1 t).
|
|
|
|
|
* apply (HX2 Hall2 t).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition exist : FSet A -> hProp.
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction.
|
|
|
|
|
- apply False_hp.
|
|
|
|
|
- apply P.
|
|
|
|
|
- apply lor.
|
|
|
|
|
- eauto with lattice_hints typeclass_instances.
|
|
|
|
|
- eauto with lattice_hints typeclass_instances.
|
|
|
|
|
- eauto with lattice_hints typeclass_instances.
|
|
|
|
|
- eauto with lattice_hints typeclass_instances.
|
|
|
|
|
- eauto with lattice_hints typeclass_instances.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma exist_intro X a : a ∈ X -> P a -> exist X.
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction X ; try (intros ; apply path_ishprop).
|
|
|
|
|
- contradiction.
|
|
|
|
|
- intros b Hin Pb.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
rewrite <- Hin.
|
|
|
|
|
apply Pb.
|
|
|
|
|
- intros X1 X2 HX1 HX2 Hin Pa.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
apply tr.
|
|
|
|
|
destruct Hin as [t | t].
|
|
|
|
|
* apply (inl (HX1 t Pa)).
|
|
|
|
|
* apply (inr (HX2 t Pa)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma exist_elim X : exist X -> hexists (fun a => a ∈ X * P a).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction X ; try (intros ; apply path_ishprop).
|
|
|
|
|
- contradiction.
|
|
|
|
|
- intros a Pa.
|
|
|
|
|
apply (tr(a;(tr idpath,Pa))).
|
|
|
|
|
- intros X1 X2 HX1 HX2 Hex.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Hex.
|
|
|
|
|
* specialize (HX1 t).
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct HX1 as [a [Hin Pa]].
|
|
|
|
|
refine (tr(a;(_,Pa))).
|
|
|
|
|
apply (tr(inl Hin)).
|
|
|
|
|
* specialize (HX2 t).
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct HX2 as [a [Hin Pa]].
|
|
|
|
|
refine (tr(a;(_,Pa))).
|
|
|
|
|
apply (tr(inr Hin)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Context `{forall a, Decidable (P a)}.
|
|
|
|
|
|
|
|
|
|
Global Instance all_decidable : (forall X, Decidable (all X)).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction ; try (apply _) ; try (intros ; apply path_ishprop).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Global Instance exist_decidable : (forall X, Decidable (exist X)).
|
|
|
|
|
Proof.
|
|
|
|
|
hinduction ; try (apply _) ; try (intros ; apply path_ishprop).
|
|
|
|
|
Defined.
|
2017-09-22 19:42:25 +02:00
|
|
|
|
End quantifiers.
|
|
|
|
|
|
|
|
|
|
Section simple_example.
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
|
|
|
|
|
Definition P : nat -> hProp := fun n => BuildhProp(n = n).
|
|
|
|
|
Definition X : FSet nat := {|0|} ∪ {|1|}.
|
|
|
|
|
|
|
|
|
|
Definition simple_example : all P X.
|
|
|
|
|
Proof.
|
|
|
|
|
refine (from_squash (all P X)).
|
|
|
|
|
compute.
|
|
|
|
|
apply tt.
|
|
|
|
|
Defined.
|
2017-09-22 20:30:25 +02:00
|
|
|
|
End simple_example.
|
|
|
|
|
|
|
|
|
|
Require Import k_finite.
|
|
|
|
|
|
|
|
|
|
Section pauli.
|
|
|
|
|
|
|
|
|
|
Inductive Pauli : Type :=
|
|
|
|
|
| XP : Pauli
|
|
|
|
|
| YP : Pauli
|
|
|
|
|
| ZP : Pauli
|
|
|
|
|
| IP : Pauli.
|
|
|
|
|
|
|
|
|
|
Definition Pauli_mult (x y : Pauli) : Pauli :=
|
|
|
|
|
match x, y with
|
|
|
|
|
| XP, XP => IP
|
|
|
|
|
| XP, YP => ZP
|
|
|
|
|
| XP, ZP => YP
|
|
|
|
|
| YP, XP => ZP
|
|
|
|
|
| YP, YP => IP
|
|
|
|
|
| YP, ZP => XP
|
|
|
|
|
| ZP, XP => YP
|
|
|
|
|
| ZP, YP => XP
|
|
|
|
|
| ZP, ZP => IP
|
|
|
|
|
| IP, x => x
|
|
|
|
|
| x, IP => x
|
|
|
|
|
end.
|
|
|
|
|
|
|
|
|
|
Definition not_XP (x : Pauli) :=
|
|
|
|
|
match x with
|
|
|
|
|
| XP => Empty
|
|
|
|
|
| x => Unit
|
|
|
|
|
end.
|
|
|
|
|
|
|
|
|
|
Definition not_YP (x : Pauli) :=
|
|
|
|
|
match x with
|
|
|
|
|
| YP => Empty
|
|
|
|
|
| x => Unit
|
|
|
|
|
end.
|
|
|
|
|
|
|
|
|
|
Definition not_ZP (x : Pauli) :=
|
|
|
|
|
match x with
|
|
|
|
|
| ZP => Empty
|
|
|
|
|
| x => Unit
|
|
|
|
|
end.
|
|
|
|
|
|
|
|
|
|
Definition not_IP (x : Pauli) :=
|
|
|
|
|
match x with
|
|
|
|
|
| IP => Empty
|
|
|
|
|
| x => Unit
|
|
|
|
|
end.
|
|
|
|
|
|
|
|
|
|
Global Instance decidable_eq_pauli : DecidablePaths Pauli.
|
|
|
|
|
Proof.
|
|
|
|
|
intros [ | | |] [ | | | ] ; try (apply (inl idpath)) ; try (refine (inr (fun p => _)))
|
|
|
|
|
; (refine (transport not_XP p tt) || refine (transport not_YP p tt)
|
|
|
|
|
|| refine (transport not_ZP p tt) || refine (transport not_IP p tt)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Global Instance Pauli_set : IsHSet Pauli.
|
|
|
|
|
Proof.
|
|
|
|
|
apply _.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Context `{Univalence}.
|
|
|
|
|
|
|
|
|
|
Definition Pauli_list : FSet Pauli := {|XP|} ∪ {|YP|} ∪ {|ZP|} ∪ {|IP|}.
|
|
|
|
|
|
|
|
|
|
Theorem Pauli_finite : Kf Pauli.
|
|
|
|
|
Proof.
|
|
|
|
|
unfold Kf, Kf_sub, Kf_sub_intern.
|
|
|
|
|
exists Pauli_list.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
unfold map.
|
|
|
|
|
intros [ | | | ] ; rewrite ?union_isIn ; apply path_iff_hprop ; try constructor ; intros [].
|
|
|
|
|
- apply (tr(inl(tr idpath))).
|
|
|
|
|
- apply (tr(inr(tr(inl(tr idpath))))).
|
|
|
|
|
- apply (tr(inr(tr(inr(tr(inl(tr idpath))))))).
|
|
|
|
|
- refine (tr(inr(tr(inr(tr(inr(tr idpath))))))).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Theorem Pauli_all (P : Pauli -> hProp) : all P Pauli_list -> forall (x : Pauli), P x.
|
|
|
|
|
Proof.
|
|
|
|
|
intros HP x.
|
|
|
|
|
refine (all_elim P Pauli_list x HP _).
|
|
|
|
|
destruct x ; rewrite ?union_isIn ; try constructor.
|
|
|
|
|
- apply (tr(inl(tr idpath))).
|
|
|
|
|
- apply (tr(inr(tr(inl(tr idpath))))).
|
|
|
|
|
- apply (tr(inr(tr(inr(tr(inl(tr idpath))))))).
|
|
|
|
|
- refine (tr(inr(tr(inr(tr(inr(tr idpath))))))).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition comm x y : hProp := BuildhProp(Pauli_mult x y = Pauli_mult y x).
|
|
|
|
|
|
|
|
|
|
Theorem Pauli_mult_comm : all (fun x => all (fun y => comm x y) Pauli_list) Pauli_list.
|
|
|
|
|
Proof.
|
|
|
|
|
refine (from_squash (all _ _)).
|
|
|
|
|
compute.
|
|
|
|
|
apply tt.
|
|
|
|
|
Defined.
|
|
|
|
|
End pauli.
|