2017-08-09 16:01:35 +02:00
|
|
|
|
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
|
|
|
|
|
Require Import HoTT.
|
2017-08-10 17:33:56 +02:00
|
|
|
|
Require Import Sub notation variations.k_finite.
|
|
|
|
|
Require Import fsets.properties.
|
2017-08-09 16:01:35 +02:00
|
|
|
|
|
|
|
|
|
Section finite_hott.
|
|
|
|
|
Variable A : Type.
|
|
|
|
|
Context `{Univalence} `{IsHSet A}.
|
|
|
|
|
|
|
|
|
|
(* A subobject is B-finite if its extension is B-finite as a type *)
|
|
|
|
|
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
|
|
|
|
|
|
|
|
|
|
Global Instance singleton_contr a : Contr {b : A & b ∈ {|a|}}.
|
|
|
|
|
Proof.
|
|
|
|
|
exists (a; tr idpath).
|
|
|
|
|
intros [b p].
|
|
|
|
|
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
|
|
|
|
|
clear p; intro p. simpl.
|
|
|
|
|
apply path_sigma' with (p^).
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b ∈ {|a|}}.
|
|
|
|
|
Proof.
|
|
|
|
|
intros _. apply (center {b : A & b ∈ {|a|}}).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
|
|
|
|
|
Proof. apply _. Defined.
|
|
|
|
|
|
|
|
|
|
Definition singleton : closedSingleton Bfin.
|
|
|
|
|
Proof.
|
|
|
|
|
intros a.
|
|
|
|
|
simple refine (Build_Finite _ 1 _).
|
|
|
|
|
apply tr.
|
|
|
|
|
symmetry.
|
|
|
|
|
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition empty_finite : closedEmpty Bfin.
|
|
|
|
|
Proof.
|
|
|
|
|
simple refine (Build_Finite _ 0 _).
|
|
|
|
|
apply tr.
|
|
|
|
|
simple refine (BuildEquiv _ _ _ _).
|
|
|
|
|
intros [a p]; apply p.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
|
|
|
|
|
Proof.
|
|
|
|
|
intros X Y.
|
|
|
|
|
destruct Y as [n Xn].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct Xn as [f [g fg gf adj]].
|
|
|
|
|
destruct n.
|
|
|
|
|
- refine (tr(inl _)).
|
|
|
|
|
apply path_forall. intro z.
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
* intros p.
|
|
|
|
|
contradiction (f (z;p)).
|
|
|
|
|
* contradiction.
|
|
|
|
|
- refine (tr(inr _)).
|
|
|
|
|
apply (tr(g(inr tt))).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Lemma no_union
|
|
|
|
|
(f : forall (X Y : Sub A),
|
|
|
|
|
Bfin X -> Bfin Y -> Bfin (X ∪ Y))
|
|
|
|
|
(a b : A) :
|
|
|
|
|
hor (a = b) (a = b -> Empty).
|
|
|
|
|
Proof.
|
|
|
|
|
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
|
|
|
|
unfold Bfin in f.
|
|
|
|
|
destruct f as [n pn].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct pn as [f [g fg gf _]].
|
|
|
|
|
destruct n as [|n].
|
|
|
|
|
unfold Sect in *.
|
|
|
|
|
- contradiction f.
|
|
|
|
|
exists a. apply (tr(inl(tr idpath))).
|
|
|
|
|
- destruct n as [|n].
|
|
|
|
|
+ (* If the size of the union is 1, then (a = b) *)
|
|
|
|
|
refine (tr (inl _)).
|
|
|
|
|
pose (s1 := (a;tr(inl(tr idpath)))
|
|
|
|
|
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
|
|
|
|
pose (s2 := (b;tr(inr(tr idpath)))
|
|
|
|
|
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
|
|
|
|
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
|
|
|
|
assert (fs_eq : f s1 = f s2).
|
|
|
|
|
{ by apply path_ishprop. }
|
|
|
|
|
refine (ap (fun x => (g x).1) fs_eq).
|
|
|
|
|
+ (* Otherwise, ¬(a = b) *)
|
|
|
|
|
refine (tr (inr _)).
|
|
|
|
|
intros p.
|
|
|
|
|
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
|
|
|
|
|
pose (s2 := inr tt : Fin n + Unit + Unit).
|
|
|
|
|
pose (gs1 := g s1).
|
|
|
|
|
pose (c := g s1).
|
|
|
|
|
pose (gs2 := g s2).
|
|
|
|
|
pose (d := g s2).
|
|
|
|
|
assert (Hgs1 : gs1 = c) by reflexivity.
|
|
|
|
|
assert (Hgs2 : gs2 = d) by reflexivity.
|
|
|
|
|
destruct c as [x px'].
|
|
|
|
|
destruct d as [y py'].
|
|
|
|
|
simple refine (Trunc_ind _ _ px') ; intros px.
|
|
|
|
|
simple refine (Trunc_ind _ _ py') ; intros py.
|
|
|
|
|
simpl.
|
|
|
|
|
cut (x = y).
|
|
|
|
|
{
|
|
|
|
|
enough (s1 = s2) as X.
|
|
|
|
|
{
|
|
|
|
|
intros.
|
|
|
|
|
unfold s1, s2 in X.
|
|
|
|
|
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
|
|
|
|
+ apply tt.
|
|
|
|
|
+ rewrite X ; apply tt.
|
|
|
|
|
}
|
|
|
|
|
transitivity (f gs1).
|
|
|
|
|
{ apply (fg s1)^. }
|
|
|
|
|
symmetry ; transitivity (f gs2).
|
|
|
|
|
{ apply (fg s2)^. }
|
|
|
|
|
rewrite Hgs1, Hgs2.
|
|
|
|
|
f_ap.
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
|
|
|
|
|
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
|
|
|
|
|
* apply (p2 @ p1^).
|
|
|
|
|
* refine (p2 @ _^ @ p1^). auto.
|
|
|
|
|
* refine (p2 @ _ @ p1^). auto.
|
|
|
|
|
* apply (p2 @ p1^).
|
|
|
|
|
}
|
|
|
|
|
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
|
|
|
|
|
** apply (px @ py^).
|
|
|
|
|
** refine (px @ _ @ py^). auto.
|
|
|
|
|
** refine (px @ _ @ py^). symmetry. auto.
|
|
|
|
|
** apply (px @ py^).
|
|
|
|
|
Defined.
|
2017-08-10 17:33:56 +02:00
|
|
|
|
|
|
|
|
|
Section empty.
|
|
|
|
|
Variable (X : A -> hProp)
|
|
|
|
|
(Xequiv : {a : A & a ∈ X} <~> Fin 0).
|
|
|
|
|
|
|
|
|
|
Lemma X_empty : X = ∅.
|
|
|
|
|
Proof.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro z.
|
|
|
|
|
apply path_iff_hprop ; try contradiction.
|
|
|
|
|
intro x.
|
|
|
|
|
destruct Xequiv as [f fequiv].
|
|
|
|
|
contradiction (f(z;x)).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End empty.
|
|
|
|
|
|
|
|
|
|
Section split.
|
|
|
|
|
Variable (X : A -> hProp)
|
|
|
|
|
(n : nat)
|
|
|
|
|
(Xequiv : {a : A & a ∈ X} <~> Fin n + Unit).
|
|
|
|
|
|
|
|
|
|
Definition split : {X' : A -> hProp & {a : A & a ∈ X'} <~> Fin n}.
|
|
|
|
|
Proof.
|
|
|
|
|
destruct Xequiv as [f [g fg gf adj]].
|
|
|
|
|
unfold Sect in *.
|
|
|
|
|
pose (fun x : A => sig (fun y : Fin n => x = (g(inl y)).1 )) as X'.
|
|
|
|
|
assert (forall a : A, IsHProp (X' a)).
|
|
|
|
|
{
|
|
|
|
|
intros.
|
|
|
|
|
unfold X'.
|
|
|
|
|
apply hprop_allpath.
|
|
|
|
|
intros [x px] [y py].
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _).
|
|
|
|
|
* cbn.
|
|
|
|
|
pose (f(g(inl x))) as fgx.
|
|
|
|
|
cut (g(inl x) = g(inl y)).
|
|
|
|
|
{
|
|
|
|
|
intros q.
|
|
|
|
|
pose (ap f q).
|
|
|
|
|
rewrite !fg in p.
|
|
|
|
|
refine (path_sum_inl _ p).
|
|
|
|
|
}
|
|
|
|
|
apply path_sigma with (px^ @ py).
|
|
|
|
|
apply path_ishprop.
|
|
|
|
|
* apply path_ishprop.
|
|
|
|
|
}
|
|
|
|
|
pose (fun a => BuildhProp(X' a)) as Y.
|
|
|
|
|
exists Y.
|
|
|
|
|
unfold Y, X'.
|
|
|
|
|
cbn.
|
|
|
|
|
unshelve esplit.
|
|
|
|
|
- intros [a [y p]]. apply y.
|
|
|
|
|
- apply isequiv_biinv.
|
|
|
|
|
unshelve esplit.
|
|
|
|
|
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
|
|
|
|
|
unfold Sect.
|
|
|
|
|
intros [a [y p]].
|
|
|
|
|
apply path_sigma with p^.
|
|
|
|
|
simpl.
|
|
|
|
|
rewrite transport_sigma.
|
|
|
|
|
simple refine (path_sigma _ _ _ _ _) ; simpl.
|
|
|
|
|
** rewrite transport_const ; reflexivity.
|
|
|
|
|
** apply path_ishprop.
|
|
|
|
|
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
|
|
|
|
|
unfold Sect.
|
|
|
|
|
intros x.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Definition new_el : {a' : A & forall z, X z =
|
|
|
|
|
lor (split.1 z) (merely (z = a'))}.
|
|
|
|
|
Proof.
|
|
|
|
|
exists ((Xequiv^-1 (inr tt)).1).
|
|
|
|
|
intros.
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
- intros Xz.
|
|
|
|
|
pose (Xequiv (z;Xz)) as fz.
|
|
|
|
|
pose (c := fz).
|
|
|
|
|
assert (c = fz). reflexivity.
|
|
|
|
|
destruct c as [fz1 | fz2].
|
|
|
|
|
* refine (tr(inl _)).
|
|
|
|
|
unfold split ; simpl.
|
|
|
|
|
exists fz1.
|
|
|
|
|
rewrite X0.
|
|
|
|
|
unfold fz.
|
|
|
|
|
destruct Xequiv as [? [? ? sect ?]].
|
|
|
|
|
compute.
|
|
|
|
|
rewrite sect.
|
|
|
|
|
reflexivity.
|
|
|
|
|
* refine (tr(inr(tr _))).
|
|
|
|
|
destruct fz2.
|
|
|
|
|
rewrite X0.
|
|
|
|
|
unfold fz.
|
|
|
|
|
rewrite eissect.
|
|
|
|
|
reflexivity.
|
|
|
|
|
- intros X0.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X0 as [Xl | Xr].
|
|
|
|
|
* unfold split in Xl ; simpl in Xl.
|
|
|
|
|
destruct Xequiv as [f [g fg gf adj]].
|
|
|
|
|
destruct Xl as [m p].
|
|
|
|
|
rewrite p.
|
|
|
|
|
apply (g (inl m)).2.
|
|
|
|
|
* strip_truncations.
|
|
|
|
|
rewrite Xr.
|
|
|
|
|
apply ((Xequiv^-1(inr tt)).2).
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
End split.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Definition bfin_to_kfin : forall (X : Sub A), Bfin X -> Kf_sub _ X.
|
|
|
|
|
Proof.
|
|
|
|
|
intros X BFinX.
|
|
|
|
|
unfold Bfin in BFinX.
|
|
|
|
|
destruct BFinX as [n iso].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
revert iso ; revert X.
|
|
|
|
|
induction n ; unfold Kf_sub, Kf_sub_intern.
|
|
|
|
|
- intros.
|
|
|
|
|
exists ∅.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro z.
|
|
|
|
|
simpl in *.
|
|
|
|
|
apply path_iff_hprop ; try contradiction.
|
|
|
|
|
destruct iso as [f f_equiv].
|
|
|
|
|
apply (fun Xz => f(z;Xz)).
|
|
|
|
|
- intros.
|
|
|
|
|
simpl in *.
|
|
|
|
|
destruct (new_el X n iso) as [a HXX'].
|
|
|
|
|
destruct (split X n iso) as [X' X'equiv].
|
|
|
|
|
destruct (IHn X' X'equiv) as [Y HY].
|
|
|
|
|
exists (Y ∪ {|a|}).
|
|
|
|
|
unfold map in *.
|
|
|
|
|
apply path_forall.
|
|
|
|
|
intro z.
|
|
|
|
|
rewrite union_isIn.
|
|
|
|
|
rewrite <- (ap (fun h => h z) HY).
|
|
|
|
|
rewrite HXX'.
|
|
|
|
|
cbn.
|
|
|
|
|
reflexivity.
|
|
|
|
|
Defined.
|
|
|
|
|
|
|
|
|
|
Context `{A_deceq : DecidablePaths A}.
|
|
|
|
|
|
|
|
|
|
(*
|
|
|
|
|
Lemma kfin_is_bfin : closedUnion Bfin.
|
|
|
|
|
Proof.
|
|
|
|
|
intros X Y HX HY.
|
|
|
|
|
unfold Bfin in *.
|
|
|
|
|
destruct HX as [n Xequiv].
|
|
|
|
|
revert X Xequiv.
|
|
|
|
|
induction n.
|
|
|
|
|
- intros.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
rewrite (X_empty X Xequiv).
|
|
|
|
|
assert(∅ ∪ Y = Y).
|
|
|
|
|
{ apply path_forall ; intro z.
|
|
|
|
|
compute-[lor].
|
|
|
|
|
eauto with lattice_hints typeclass_instances.
|
|
|
|
|
}
|
|
|
|
|
rewrite X0.
|
|
|
|
|
apply HY.
|
|
|
|
|
- simpl in *.
|
|
|
|
|
intros.
|
|
|
|
|
destruct HY as [m Yequiv].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct (new_el X n Xequiv) as [a HXX'].
|
|
|
|
|
destruct (split X n Xequiv) as [X' X'equiv].
|
|
|
|
|
destruct (IHn X' (tr X'equiv)) as [k Hk].
|
|
|
|
|
strip_truncations.
|
|
|
|
|
cbn in *.
|
|
|
|
|
rewrite (path_forall _ _ HXX').
|
|
|
|
|
assert
|
|
|
|
|
(forall a0,
|
|
|
|
|
BuildhProp (Trunc (-1) (X' a0 ∨ merely (a0 = a) + Y a0))
|
|
|
|
|
=
|
|
|
|
|
BuildhProp (hor (Trunc (-1) (X' a0 + Y a0)) (merely (a0 = a)))
|
|
|
|
|
).
|
|
|
|
|
{
|
|
|
|
|
intros.
|
|
|
|
|
apply path_iff_hprop.
|
|
|
|
|
* intros X0.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X0 as [X0 | X0].
|
|
|
|
|
** strip_truncations.
|
|
|
|
|
destruct X0 as [X0 | X0].
|
|
|
|
|
*** refine (tr(inl(tr _))).
|
|
|
|
|
apply (inl X0).
|
|
|
|
|
*** refine (tr(inr X0)).
|
|
|
|
|
** refine (tr(inl(tr _))).
|
|
|
|
|
apply (inr X0).
|
|
|
|
|
* intros X0.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct X0 as [X0 | X0].
|
|
|
|
|
** strip_truncations.
|
|
|
|
|
destruct X0 as [X0 | X0].
|
|
|
|
|
*** refine (tr(inl(tr(inl X0)))).
|
|
|
|
|
*** refine (tr(inr X0)).
|
|
|
|
|
** refine (tr(inl(tr(inr X0)))).
|
|
|
|
|
}
|
|
|
|
|
(* rewrite (path_forall _ _ X0). *)
|
|
|
|
|
assert
|
|
|
|
|
(
|
|
|
|
|
{a0 : A & hor (Trunc (-1) (X' a0 + Y a0)) (merely (a0 = a))}
|
|
|
|
|
=
|
|
|
|
|
{a0 : A & Trunc (-1) (X' a0 + Y a0)}
|
|
|
|
|
+
|
|
|
|
|
{a0 : A & (merely (a0 = a))}
|
|
|
|
|
).
|
|
|
|
|
{
|
|
|
|
|
assert ({a0 : A & Trunc (-1) (X' a0 + Y a0)} + {a0 : A & merely (a0 = a)} ->
|
|
|
|
|
{a0 : A & hor (Trunc (-1) (X' a0 + Y a0)) (merely (a0 = a))}).
|
|
|
|
|
{
|
|
|
|
|
intros.
|
|
|
|
|
destruct X1.
|
|
|
|
|
* destruct s as [c p].
|
|
|
|
|
exists c.
|
|
|
|
|
apply tr.
|
|
|
|
|
left.
|
|
|
|
|
apply p.
|
|
|
|
|
* destruct s as [c p].
|
|
|
|
|
exists c.
|
|
|
|
|
apply tr.
|
|
|
|
|
right. apply p.
|
|
|
|
|
|
|
|
|
|
simple refine (path_universe _).
|
|
|
|
|
* intros [a0 p].
|
|
|
|
|
destruct (dec (a0 = a)).
|
|
|
|
|
** right. exists a0. apply (tr p0).
|
|
|
|
|
** left.
|
|
|
|
|
exists a0.
|
|
|
|
|
strip_truncations.
|
|
|
|
|
destruct p ; strip_truncations.
|
|
|
|
|
*** apply (tr t).
|
|
|
|
|
*** contradiction (n0 t).
|
|
|
|
|
* apply isequiv_biinv.
|
|
|
|
|
unfold BiInv.
|
|
|
|
|
split.
|
|
|
|
|
**
|
|
|
|
|
|
|
|
|
|
exists a0
|
|
|
|
|
}
|
|
|
|
|
rewrite X1.
|
|
|
|
|
apply finite_sum.
|
|
|
|
|
* simple refine (Build_Finite _ k (tr Hk)).
|
|
|
|
|
* apply singleton.
|
|
|
|
|
Admitted.
|
|
|
|
|
*)
|
|
|
|
|
|
2017-08-09 16:01:35 +02:00
|
|
|
|
End finite_hott.
|