mirror of https://github.com/nmvdw/HITs-Examples
Added proof: Bishop finite => Kuratowski finite
This commit is contained in:
parent
33808928db
commit
89808c7297
|
@ -1,6 +1,7 @@
|
|||
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
|
||||
Require Import HoTT.
|
||||
Require Import Sub notation.
|
||||
Require Import Sub notation variations.k_finite.
|
||||
Require Import fsets.properties.
|
||||
|
||||
Section finite_hott.
|
||||
Variable A : Type.
|
||||
|
@ -132,4 +133,255 @@ Section finite_hott.
|
|||
** refine (px @ _ @ py^). symmetry. auto.
|
||||
** apply (px @ py^).
|
||||
Defined.
|
||||
|
||||
Section empty.
|
||||
Variable (X : A -> hProp)
|
||||
(Xequiv : {a : A & a ∈ X} <~> Fin 0).
|
||||
|
||||
Lemma X_empty : X = ∅.
|
||||
Proof.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
apply path_iff_hprop ; try contradiction.
|
||||
intro x.
|
||||
destruct Xequiv as [f fequiv].
|
||||
contradiction (f(z;x)).
|
||||
Defined.
|
||||
|
||||
End empty.
|
||||
|
||||
Section split.
|
||||
Variable (X : A -> hProp)
|
||||
(n : nat)
|
||||
(Xequiv : {a : A & a ∈ X} <~> Fin n + Unit).
|
||||
|
||||
Definition split : {X' : A -> hProp & {a : A & a ∈ X'} <~> Fin n}.
|
||||
Proof.
|
||||
destruct Xequiv as [f [g fg gf adj]].
|
||||
unfold Sect in *.
|
||||
pose (fun x : A => sig (fun y : Fin n => x = (g(inl y)).1 )) as X'.
|
||||
assert (forall a : A, IsHProp (X' a)).
|
||||
{
|
||||
intros.
|
||||
unfold X'.
|
||||
apply hprop_allpath.
|
||||
intros [x px] [y py].
|
||||
simple refine (path_sigma _ _ _ _ _).
|
||||
* cbn.
|
||||
pose (f(g(inl x))) as fgx.
|
||||
cut (g(inl x) = g(inl y)).
|
||||
{
|
||||
intros q.
|
||||
pose (ap f q).
|
||||
rewrite !fg in p.
|
||||
refine (path_sum_inl _ p).
|
||||
}
|
||||
apply path_sigma with (px^ @ py).
|
||||
apply path_ishprop.
|
||||
* apply path_ishprop.
|
||||
}
|
||||
pose (fun a => BuildhProp(X' a)) as Y.
|
||||
exists Y.
|
||||
unfold Y, X'.
|
||||
cbn.
|
||||
unshelve esplit.
|
||||
- intros [a [y p]]. apply y.
|
||||
- apply isequiv_biinv.
|
||||
unshelve esplit.
|
||||
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
|
||||
unfold Sect.
|
||||
intros [a [y p]].
|
||||
apply path_sigma with p^.
|
||||
simpl.
|
||||
rewrite transport_sigma.
|
||||
simple refine (path_sigma _ _ _ _ _) ; simpl.
|
||||
** rewrite transport_const ; reflexivity.
|
||||
** apply path_ishprop.
|
||||
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
|
||||
unfold Sect.
|
||||
intros x.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Definition new_el : {a' : A & forall z, X z =
|
||||
lor (split.1 z) (merely (z = a'))}.
|
||||
Proof.
|
||||
exists ((Xequiv^-1 (inr tt)).1).
|
||||
intros.
|
||||
apply path_iff_hprop.
|
||||
- intros Xz.
|
||||
pose (Xequiv (z;Xz)) as fz.
|
||||
pose (c := fz).
|
||||
assert (c = fz). reflexivity.
|
||||
destruct c as [fz1 | fz2].
|
||||
* refine (tr(inl _)).
|
||||
unfold split ; simpl.
|
||||
exists fz1.
|
||||
rewrite X0.
|
||||
unfold fz.
|
||||
destruct Xequiv as [? [? ? sect ?]].
|
||||
compute.
|
||||
rewrite sect.
|
||||
reflexivity.
|
||||
* refine (tr(inr(tr _))).
|
||||
destruct fz2.
|
||||
rewrite X0.
|
||||
unfold fz.
|
||||
rewrite eissect.
|
||||
reflexivity.
|
||||
- intros X0.
|
||||
strip_truncations.
|
||||
destruct X0 as [Xl | Xr].
|
||||
* unfold split in Xl ; simpl in Xl.
|
||||
destruct Xequiv as [f [g fg gf adj]].
|
||||
destruct Xl as [m p].
|
||||
rewrite p.
|
||||
apply (g (inl m)).2.
|
||||
* strip_truncations.
|
||||
rewrite Xr.
|
||||
apply ((Xequiv^-1(inr tt)).2).
|
||||
Defined.
|
||||
|
||||
End split.
|
||||
|
||||
|
||||
Definition bfin_to_kfin : forall (X : Sub A), Bfin X -> Kf_sub _ X.
|
||||
Proof.
|
||||
intros X BFinX.
|
||||
unfold Bfin in BFinX.
|
||||
destruct BFinX as [n iso].
|
||||
strip_truncations.
|
||||
revert iso ; revert X.
|
||||
induction n ; unfold Kf_sub, Kf_sub_intern.
|
||||
- intros.
|
||||
exists ∅.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
simpl in *.
|
||||
apply path_iff_hprop ; try contradiction.
|
||||
destruct iso as [f f_equiv].
|
||||
apply (fun Xz => f(z;Xz)).
|
||||
- intros.
|
||||
simpl in *.
|
||||
destruct (new_el X n iso) as [a HXX'].
|
||||
destruct (split X n iso) as [X' X'equiv].
|
||||
destruct (IHn X' X'equiv) as [Y HY].
|
||||
exists (Y ∪ {|a|}).
|
||||
unfold map in *.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
rewrite union_isIn.
|
||||
rewrite <- (ap (fun h => h z) HY).
|
||||
rewrite HXX'.
|
||||
cbn.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Context `{A_deceq : DecidablePaths A}.
|
||||
|
||||
(*
|
||||
Lemma kfin_is_bfin : closedUnion Bfin.
|
||||
Proof.
|
||||
intros X Y HX HY.
|
||||
unfold Bfin in *.
|
||||
destruct HX as [n Xequiv].
|
||||
revert X Xequiv.
|
||||
induction n.
|
||||
- intros.
|
||||
strip_truncations.
|
||||
rewrite (X_empty X Xequiv).
|
||||
assert(∅ ∪ Y = Y).
|
||||
{ apply path_forall ; intro z.
|
||||
compute-[lor].
|
||||
eauto with lattice_hints typeclass_instances.
|
||||
}
|
||||
rewrite X0.
|
||||
apply HY.
|
||||
- simpl in *.
|
||||
intros.
|
||||
destruct HY as [m Yequiv].
|
||||
strip_truncations.
|
||||
destruct (new_el X n Xequiv) as [a HXX'].
|
||||
destruct (split X n Xequiv) as [X' X'equiv].
|
||||
destruct (IHn X' (tr X'equiv)) as [k Hk].
|
||||
strip_truncations.
|
||||
cbn in *.
|
||||
rewrite (path_forall _ _ HXX').
|
||||
assert
|
||||
(forall a0,
|
||||
BuildhProp (Trunc (-1) (X' a0 ∨ merely (a0 = a) + Y a0))
|
||||
=
|
||||
BuildhProp (hor (Trunc (-1) (X' a0 + Y a0)) (merely (a0 = a)))
|
||||
).
|
||||
{
|
||||
intros.
|
||||
apply path_iff_hprop.
|
||||
* intros X0.
|
||||
strip_truncations.
|
||||
destruct X0 as [X0 | X0].
|
||||
** strip_truncations.
|
||||
destruct X0 as [X0 | X0].
|
||||
*** refine (tr(inl(tr _))).
|
||||
apply (inl X0).
|
||||
*** refine (tr(inr X0)).
|
||||
** refine (tr(inl(tr _))).
|
||||
apply (inr X0).
|
||||
* intros X0.
|
||||
strip_truncations.
|
||||
destruct X0 as [X0 | X0].
|
||||
** strip_truncations.
|
||||
destruct X0 as [X0 | X0].
|
||||
*** refine (tr(inl(tr(inl X0)))).
|
||||
*** refine (tr(inr X0)).
|
||||
** refine (tr(inl(tr(inr X0)))).
|
||||
}
|
||||
(* rewrite (path_forall _ _ X0). *)
|
||||
assert
|
||||
(
|
||||
{a0 : A & hor (Trunc (-1) (X' a0 + Y a0)) (merely (a0 = a))}
|
||||
=
|
||||
{a0 : A & Trunc (-1) (X' a0 + Y a0)}
|
||||
+
|
||||
{a0 : A & (merely (a0 = a))}
|
||||
).
|
||||
{
|
||||
assert ({a0 : A & Trunc (-1) (X' a0 + Y a0)} + {a0 : A & merely (a0 = a)} ->
|
||||
{a0 : A & hor (Trunc (-1) (X' a0 + Y a0)) (merely (a0 = a))}).
|
||||
{
|
||||
intros.
|
||||
destruct X1.
|
||||
* destruct s as [c p].
|
||||
exists c.
|
||||
apply tr.
|
||||
left.
|
||||
apply p.
|
||||
* destruct s as [c p].
|
||||
exists c.
|
||||
apply tr.
|
||||
right. apply p.
|
||||
|
||||
simple refine (path_universe _).
|
||||
* intros [a0 p].
|
||||
destruct (dec (a0 = a)).
|
||||
** right. exists a0. apply (tr p0).
|
||||
** left.
|
||||
exists a0.
|
||||
strip_truncations.
|
||||
destruct p ; strip_truncations.
|
||||
*** apply (tr t).
|
||||
*** contradiction (n0 t).
|
||||
* apply isequiv_biinv.
|
||||
unfold BiInv.
|
||||
split.
|
||||
**
|
||||
|
||||
exists a0
|
||||
}
|
||||
rewrite X1.
|
||||
apply finite_sum.
|
||||
* simple refine (Build_Finite _ k (tr Hk)).
|
||||
* apply singleton.
|
||||
Admitted.
|
||||
*)
|
||||
|
||||
End finite_hott.
|
||||
|
|
Loading…
Reference in New Issue