HITs-Examples/FiniteSets/Enumerated.v

201 lines
5.9 KiB
Coq
Raw Normal View History

2017-07-31 17:39:01 +02:00
(* Enumerated finite sets *)
Require Import HoTT HoTT.Types.Bool.
Require Import disjunction.
Definition Sub A := A -> hProp.
Fixpoint listExt {A} (ls : list A) : Sub A := fun x =>
match ls with
| nil => False_hp
2017-08-01 15:12:59 +02:00
| cons a ls' => BuildhProp (Trunc (-1) (x = a)) listExt ls' x
2017-07-31 17:39:01 +02:00
end.
Fixpoint map {A B} (f : A -> B) (ls : list A) : list B :=
match ls with
| nil => nil
| cons x xs => cons (f x) (map f xs)
end.
Fixpoint filterD {A} (P : A -> Bool) (ls : list A) : list { x : A | P x = true }.
Proof.
destruct ls as [|x xs].
- exact nil.
2017-08-01 15:12:59 +02:00
- enough ((P x = true) + (P x = false)) as HP.
2017-07-31 17:39:01 +02:00
{ destruct HP as [HP | HP].
+ refine (cons (exist _ x HP) (filterD _ P xs)).
+ refine (filterD _ P xs).
}
{ destruct (P x); [left | right]; reflexivity. }
Defined.
Lemma filterD_cons {A} (P : A -> Bool) (a : A) (ls : list A) (Pa : P a = true) :
filterD P (cons a ls) = cons (a;Pa) (filterD P ls).
Proof.
simpl.
destruct (if P a as b return ((b = true) + (b = false))
then inl 1%path
else inr 1%path) as [Pa' | Pa'].
- rewrite (set_path2 Pa Pa'). reflexivity.
- rewrite Pa in Pa'. contradiction (true_ne_false Pa').
Defined.
Lemma filterD_cons_no {A} (P : A -> Bool) (a : A) (ls : list A) (Pa : P a = false) :
filterD P (cons a ls) = filterD P ls.
Proof.
simpl.
destruct (if P a as b return ((b = true) + (b = false))
then inl 1%path
else inr 1%path) as [Pa' | Pa'].
- rewrite Pa' in Pa. contradiction (true_ne_false Pa).
- reflexivity.
Defined.
Lemma filterD_lookup {A} (P : A -> Bool) (x : A) (ls : list A) (Px : P x = true) :
listExt ls x -> listExt (filterD P ls) (x;Px).
Proof.
induction ls as [| a ls].
- simpl. exact idmap.
2017-08-01 15:12:59 +02:00
- assert ((P a = true) + (P a = false)) as HPA.
2017-07-31 17:39:01 +02:00
{ destruct (P a); [left | right]; reflexivity. }
destruct HPA as [Pa | Pa].
+ rewrite (filterD_cons P a ls Pa). simpl.
simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
* left. strip_truncations.
apply tr.
apply path_sigma' with Hxa.
apply set_path2.
* right. apply (IHls HIH).
+ rewrite (filterD_cons_no P a ls Pa). simpl.
simple refine (Trunc_ind _ _). intros [Hxa | HIH].
* strip_truncations.
rewrite <- Hxa in Pa. rewrite Px in Pa.
contradiction (true_ne_false Pa).
* apply IHls. apply HIH.
Defined.
Definition enumerated (A : Type) : Type :=
exists ls, forall (a : A), listExt ls a.
Lemma enumerated_comprehension (A : Type) (P : A -> Bool) :
enumerated A -> enumerated { x : A | P x = true }.
Proof.
intros [eA HeA].
exists (filterD P eA).
intros [x Px].
apply filterD_lookup.
apply (HeA x).
Defined.
Lemma map_listExt {A B} (f : A -> B) (ls : list A) (y : A) :
listExt ls y -> listExt (map f ls) (f y).
Proof.
induction ls.
- simpl. apply idmap.
- simpl. simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
+ left. strip_truncations. apply tr. f_ap.
+ right. apply IHls. apply HIH.
Defined.
Lemma enumerated_surj (A B : Type) (f : A -> B) :
IsSurjection f -> enumerated A -> enumerated B.
Proof.
intros Hsurj [eA HeA].
exists (map f eA).
intros x. specialize (Hsurj x).
pose (t := center (merely (hfiber f x))).
simple refine (@Trunc_rec (-1) (hfiber f x) (listExt (map f eA) x) _ _ t).
intros [y Hfy].
specialize (HeA y). rewrite <- Hfy.
apply map_listExt. apply HeA.
Defined.
Lemma listExt_app_r {A} (ls ls' : list A) (x : A) :
listExt ls x -> listExt (ls ++ ls') x.
Proof.
induction ls; simpl.
- exact Empty_rec.
- simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
+ left. apply Hxa.
+ right. apply IHls. apply HIH.
Defined.
Lemma listExt_app_l {A} (ls ls' : list A) (x : A) :
listExt ls x -> listExt (ls' ++ ls) x.
Proof.
induction ls'; simpl.
- apply idmap.
- intros Hls.
apply tr.
right. apply IHls'. apply Hls.
Defined.
Lemma enumerated_sum (A B : Type) :
enumerated A -> enumerated B -> enumerated (A + B).
Proof.
intros [eA HeA] [eB HeB].
exists (app (map inl eA) (map inr eB)).
intros [x | x].
- apply listExt_app_r. apply map_listExt. apply HeA.
- apply listExt_app_l. apply map_listExt. apply HeB.
Defined.
Fixpoint listProd_sing {A B} (x : A) (ys : list B) : list (A * B).
Proof.
destruct ys as [|y ys].
- exact nil.
- refine (cons (x,y) _).
apply (listProd_sing _ _ x ys).
Defined.
Fixpoint listProd {A B} (xs : list A) (ys : list B) : list (A * B).
Proof.
destruct xs as [|x xs].
- exact nil.
- refine (app _ _).
+ exact (listProd_sing x ys).
+ exact (listProd _ _ xs ys).
Defined.
Lemma listExt_prod_sing {A B} (x : A) (y : B) (ys : list B) :
listExt ys y -> listExt (listProd_sing x ys) (x, y).
Proof.
induction ys; simpl.
- exact idmap.
- simple refine (Trunc_ind _ _). intros [Hxy | HIH]; simpl; apply tr.
+ left. strip_truncations. apply tr. f_ap.
+ right. apply IHys. apply HIH.
Defined.
Lemma listExt_prod `{Funext} {A B} (xs : list A) (ys : list B) : forall (x : A) (y : B),
listExt xs x -> listExt ys y -> listExt (listProd xs ys) (x,y).
Proof.
induction xs as [| x' xs]; intros x y.
- simpl. contradiction.
- simpl. simple refine (Trunc_ind _ _). intros Htx. simpl.
induction ys as [| y' ys].
+ simpl. contradiction.
+ simpl. simple refine (Trunc_ind _ _). intros Hty. simpl. apply tr.
destruct Htx as [Hxx' | Hxs], Hty as [Hyy' | Hys].
* left. strip_truncations. apply tr. f_ap.
* right. strip_truncations. rewrite <- Hxx'. clear Hxx'.
apply listExt_app_r.
apply listExt_prod_sing. assumption.
* right. strip_truncations. rewrite <- Hyy'.
rewrite <- Hyy' in IHxs.
apply listExt_app_l. apply IHxs. assumption.
simpl. apply tr. left. apply tr. reflexivity.
* right.
apply listExt_app_l.
apply IHxs. assumption.
simpl. apply tr. right. assumption.
Defined.
Lemma enumerated_prod (A B : Type) `{Funext} :
enumerated A -> enumerated B -> enumerated (A * B).
Proof.
intros [eA HeA] [eB HeB].
exists (listProd eA eB).
intros [x y].
apply listExt_prod; [ apply HeA | apply HeB ].
Defined.