HITs-Examples/FiniteSets/Enumerated.v

201 lines
5.9 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* Enumerated finite sets *)
Require Import HoTT HoTT.Types.Bool.
Require Import disjunction.
Definition Sub A := A -> hProp.
Fixpoint listExt {A} (ls : list A) : Sub A := fun x =>
match ls with
| nil => False_hp
| cons a ls' => BuildhProp (Trunc (-1) (x = a)) listExt ls' x
end.
Fixpoint map {A B} (f : A -> B) (ls : list A) : list B :=
match ls with
| nil => nil
| cons x xs => cons (f x) (map f xs)
end.
Fixpoint filterD {A} (P : A -> Bool) (ls : list A) : list { x : A | P x = true }.
Proof.
destruct ls as [|x xs].
- exact nil.
- enough ((P x = true) + (P x = false)) as HP.
{ destruct HP as [HP | HP].
+ refine (cons (exist _ x HP) (filterD _ P xs)).
+ refine (filterD _ P xs).
}
{ destruct (P x); [left | right]; reflexivity. }
Defined.
Lemma filterD_cons {A} (P : A -> Bool) (a : A) (ls : list A) (Pa : P a = true) :
filterD P (cons a ls) = cons (a;Pa) (filterD P ls).
Proof.
simpl.
destruct (if P a as b return ((b = true) + (b = false))
then inl 1%path
else inr 1%path) as [Pa' | Pa'].
- rewrite (set_path2 Pa Pa'). reflexivity.
- rewrite Pa in Pa'. contradiction (true_ne_false Pa').
Defined.
Lemma filterD_cons_no {A} (P : A -> Bool) (a : A) (ls : list A) (Pa : P a = false) :
filterD P (cons a ls) = filterD P ls.
Proof.
simpl.
destruct (if P a as b return ((b = true) + (b = false))
then inl 1%path
else inr 1%path) as [Pa' | Pa'].
- rewrite Pa' in Pa. contradiction (true_ne_false Pa).
- reflexivity.
Defined.
Lemma filterD_lookup {A} (P : A -> Bool) (x : A) (ls : list A) (Px : P x = true) :
listExt ls x -> listExt (filterD P ls) (x;Px).
Proof.
induction ls as [| a ls].
- simpl. exact idmap.
- assert ((P a = true) + (P a = false)) as HPA.
{ destruct (P a); [left | right]; reflexivity. }
destruct HPA as [Pa | Pa].
+ rewrite (filterD_cons P a ls Pa). simpl.
simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
* left. strip_truncations.
apply tr.
apply path_sigma' with Hxa.
apply set_path2.
* right. apply (IHls HIH).
+ rewrite (filterD_cons_no P a ls Pa). simpl.
simple refine (Trunc_ind _ _). intros [Hxa | HIH].
* strip_truncations.
rewrite <- Hxa in Pa. rewrite Px in Pa.
contradiction (true_ne_false Pa).
* apply IHls. apply HIH.
Defined.
Definition enumerated (A : Type) : Type :=
exists ls, forall (a : A), listExt ls a.
Lemma enumerated_comprehension (A : Type) (P : A -> Bool) :
enumerated A -> enumerated { x : A | P x = true }.
Proof.
intros [eA HeA].
exists (filterD P eA).
intros [x Px].
apply filterD_lookup.
apply (HeA x).
Defined.
Lemma map_listExt {A B} (f : A -> B) (ls : list A) (y : A) :
listExt ls y -> listExt (map f ls) (f y).
Proof.
induction ls.
- simpl. apply idmap.
- simpl. simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
+ left. strip_truncations. apply tr. f_ap.
+ right. apply IHls. apply HIH.
Defined.
Lemma enumerated_surj (A B : Type) (f : A -> B) :
IsSurjection f -> enumerated A -> enumerated B.
Proof.
intros Hsurj [eA HeA].
exists (map f eA).
intros x. specialize (Hsurj x).
pose (t := center (merely (hfiber f x))).
simple refine (@Trunc_rec (-1) (hfiber f x) (listExt (map f eA) x) _ _ t).
intros [y Hfy].
specialize (HeA y). rewrite <- Hfy.
apply map_listExt. apply HeA.
Defined.
Lemma listExt_app_r {A} (ls ls' : list A) (x : A) :
listExt ls x -> listExt (ls ++ ls') x.
Proof.
induction ls; simpl.
- exact Empty_rec.
- simple refine (Trunc_ind _ _). intros [Hxa | HIH]; apply tr.
+ left. apply Hxa.
+ right. apply IHls. apply HIH.
Defined.
Lemma listExt_app_l {A} (ls ls' : list A) (x : A) :
listExt ls x -> listExt (ls' ++ ls) x.
Proof.
induction ls'; simpl.
- apply idmap.
- intros Hls.
apply tr.
right. apply IHls'. apply Hls.
Defined.
Lemma enumerated_sum (A B : Type) :
enumerated A -> enumerated B -> enumerated (A + B).
Proof.
intros [eA HeA] [eB HeB].
exists (app (map inl eA) (map inr eB)).
intros [x | x].
- apply listExt_app_r. apply map_listExt. apply HeA.
- apply listExt_app_l. apply map_listExt. apply HeB.
Defined.
Fixpoint listProd_sing {A B} (x : A) (ys : list B) : list (A * B).
Proof.
destruct ys as [|y ys].
- exact nil.
- refine (cons (x,y) _).
apply (listProd_sing _ _ x ys).
Defined.
Fixpoint listProd {A B} (xs : list A) (ys : list B) : list (A * B).
Proof.
destruct xs as [|x xs].
- exact nil.
- refine (app _ _).
+ exact (listProd_sing x ys).
+ exact (listProd _ _ xs ys).
Defined.
Lemma listExt_prod_sing {A B} (x : A) (y : B) (ys : list B) :
listExt ys y -> listExt (listProd_sing x ys) (x, y).
Proof.
induction ys; simpl.
- exact idmap.
- simple refine (Trunc_ind _ _). intros [Hxy | HIH]; simpl; apply tr.
+ left. strip_truncations. apply tr. f_ap.
+ right. apply IHys. apply HIH.
Defined.
Lemma listExt_prod `{Funext} {A B} (xs : list A) (ys : list B) : forall (x : A) (y : B),
listExt xs x -> listExt ys y -> listExt (listProd xs ys) (x,y).
Proof.
induction xs as [| x' xs]; intros x y.
- simpl. contradiction.
- simpl. simple refine (Trunc_ind _ _). intros Htx. simpl.
induction ys as [| y' ys].
+ simpl. contradiction.
+ simpl. simple refine (Trunc_ind _ _). intros Hty. simpl. apply tr.
destruct Htx as [Hxx' | Hxs], Hty as [Hyy' | Hys].
* left. strip_truncations. apply tr. f_ap.
* right. strip_truncations. rewrite <- Hxx'. clear Hxx'.
apply listExt_app_r.
apply listExt_prod_sing. assumption.
* right. strip_truncations. rewrite <- Hyy'.
rewrite <- Hyy' in IHxs.
apply listExt_app_l. apply IHxs. assumption.
simpl. apply tr. left. apply tr. reflexivity.
* right.
apply listExt_app_l.
apply IHxs. assumption.
simpl. apply tr. right. assumption.
Defined.
Lemma enumerated_prod (A B : Type) `{Funext} :
enumerated A -> enumerated B -> enumerated (A * B).
Proof.
intros [eA HeA] [eB HeB].
exists (listProd eA eB).
intros [x y].
apply listExt_prod; [ apply HeA | apply HeB ].
Defined.