mirror of https://github.com/nmvdw/HITs-Examples
first step toward cons-union iso: construction of min function for FSet A, where A is Totally Ordered. To construct min, various lemmas about empty set are needed. This min function is constructed in a very inefficient way w.r.t. proofs of assoc, comm, etc.
This commit is contained in:
parent
f8ed41e5fe
commit
0d210cae04
|
@ -3,3 +3,5 @@
|
|||
definition.v
|
||||
operations.v
|
||||
properties.v
|
||||
empty_set.v
|
||||
ordered.v
|
||||
|
|
|
@ -190,3 +190,7 @@ Instance FSet_recursion A : HitRecursion (FSet A) := {
|
|||
H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
|
||||
|
||||
End FSet.
|
||||
|
||||
Notation "{| x |}" := (L x).
|
||||
Infix "∪" := U (at level 8, right associativity).
|
||||
Notation "∅" := E.
|
||||
|
|
|
@ -0,0 +1,227 @@
|
|||
Require Import HoTT.
|
||||
Require Import HitTactics.
|
||||
Require Import definition.
|
||||
Require Import operations.
|
||||
Require Import properties.
|
||||
|
||||
|
||||
Ltac destruct_match := repeat
|
||||
match goal with
|
||||
| [|- match ?X with | _ => _ end ] => destruct X
|
||||
end.
|
||||
|
||||
Ltac destruct_match_1 :=
|
||||
repeat match goal with
|
||||
| [|- match ?X with | _ => _ end ] => destruct X
|
||||
| [|- ?X = ?Y ] => apply path_ishprop
|
||||
| [ H: ?x <> E |- Empty ] => destruct H
|
||||
| [ H1: ?x = E, H2: ?y = E, H3: ?w ∪ ?q = E |- ?r = E]
|
||||
=> rewrite H1, H2 in H3; rewrite nl in H3; rewrite nl in H3
|
||||
end.
|
||||
|
||||
Ltac eq_neq_tac :=
|
||||
match goal with
|
||||
| [ H: ?x <> E, H': ?x = E |- _ ] => destruct H; assumption
|
||||
end.
|
||||
|
||||
Section EmptySetProperties.
|
||||
|
||||
Context {A : Type}.
|
||||
Context {A_deceq : DecidablePaths A}.
|
||||
|
||||
|
||||
(*Should go to properties *)
|
||||
Lemma union_subset `{Funext} :
|
||||
forall x y z: FSet A, x ∪ y ⊆ z = true -> x ⊆ z = true /\ y ⊆ z = true.
|
||||
intros x y z Hu.
|
||||
split.
|
||||
- eapply subset_isIn. intros a Ha.
|
||||
eapply subset_isIn in Hu.
|
||||
+ instantiate (1 := a) in Hu.
|
||||
assumption.
|
||||
+ transitivity (a ∈ x || a ∈ y)%Bool .
|
||||
apply union_isIn.
|
||||
rewrite Ha. cbn; reflexivity.
|
||||
- eapply subset_isIn. intros a Ha.
|
||||
eapply subset_isIn in Hu.
|
||||
+ instantiate (1 := a) in Hu.
|
||||
assumption.
|
||||
+ rewrite comm. transitivity (a ∈ y || a ∈ x)%Bool .
|
||||
apply union_isIn.
|
||||
rewrite Ha. cbn. reflexivity.
|
||||
Defined.
|
||||
|
||||
|
||||
Lemma eset_subset_l `{Funext} : forall x: FSet A, x ⊆ ∅ = true -> x = ∅.
|
||||
intros x He.
|
||||
apply eq_subset.
|
||||
split.
|
||||
- cbn; reflexivity.
|
||||
- assumption.
|
||||
Defined.
|
||||
|
||||
Lemma eset_subset_r `{Funext} : forall x: FSet A, x = ∅ -> x ⊆ ∅ = true.
|
||||
intros x He.
|
||||
apply eq_subset. apply symmetry. assumption.
|
||||
Defined.
|
||||
|
||||
Lemma subset_transitive `{Funext}:
|
||||
forall x y z, x ⊆ y = true -> y ⊆ z = true -> x ⊆ z = true.
|
||||
intros.
|
||||
Admitted.
|
||||
|
||||
Lemma eset_union_l `{Funext} : forall x y: FSet A, x ∪ y = ∅ -> x = ∅ .
|
||||
Proof.
|
||||
intros.
|
||||
assert (x ⊆ (x ∪ y) = true).
|
||||
apply subset_union_equiv. rewrite assoc. rewrite (union_idem x). reflexivity.
|
||||
apply eset_subset_r in X.
|
||||
assert (x ⊆ ∅ = true).
|
||||
apply (subset_transitive x (U x y)); assumption.
|
||||
apply eset_subset_l.
|
||||
assumption.
|
||||
Defined.
|
||||
|
||||
Lemma eset_union_lr `{Funext} :
|
||||
forall x y: FSet A, x ∪ y = ∅ -> ((x = ∅) /\ (y = ∅)).
|
||||
Proof.
|
||||
intros.
|
||||
split.
|
||||
apply eset_union_l in X; assumption.
|
||||
rewrite comm in X.
|
||||
apply eset_union_l in X. assumption.
|
||||
Defined.
|
||||
|
||||
|
||||
|
||||
Lemma non_empty_union_l `{Funext} :
|
||||
forall x y: FSet A, x <> E -> x ∪ y <> E.
|
||||
intros x y He.
|
||||
intro Hu.
|
||||
apply He.
|
||||
apply eq_subset in Hu.
|
||||
destruct Hu as [_ H1].
|
||||
apply union_subset in H1.
|
||||
apply eset_subset_l.
|
||||
destruct H1.
|
||||
assumption.
|
||||
Defined.
|
||||
|
||||
Lemma non_empty_union_r `{Funext} :
|
||||
forall x y: FSet A, y <> E -> x ∪ y <> E.
|
||||
intros x y He.
|
||||
intro Hu.
|
||||
apply He.
|
||||
apply eq_subset in Hu.
|
||||
destruct Hu as [_ H1].
|
||||
apply union_subset in H1.
|
||||
apply eset_subset_l.
|
||||
destruct H1.
|
||||
assumption.
|
||||
Defined.
|
||||
|
||||
|
||||
|
||||
Theorem contrapositive : forall P Q : Type,
|
||||
(P -> Q) -> (not Q -> not P) .
|
||||
Proof.
|
||||
intros p q H1 H2.
|
||||
unfold "~".
|
||||
intro H3.
|
||||
apply H1 in H3. apply H2 in H3. assumption.
|
||||
Defined.
|
||||
|
||||
|
||||
|
||||
Lemma non_empty_singleton : forall a: A, L a <> E.
|
||||
intros a H.
|
||||
enough (false = true).
|
||||
contradiction (false_ne_true X).
|
||||
transitivity (isIn a E).
|
||||
cbn. reflexivity.
|
||||
transitivity (a ∈ (L a)).
|
||||
apply (ap (fun x => a ∈ x) H^) .
|
||||
cbn. destruct (dec (a = a)).
|
||||
reflexivity.
|
||||
destruct n.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
|
||||
(* Lemma aux `{Funext}: forall x: FSet A, forall p q: x = ∅ -> False, p = q.
|
||||
intros. apply path_forall. intro.
|
||||
apply path_ishprop.
|
||||
Defined.*)
|
||||
|
||||
|
||||
Lemma fset_eset_dec `{Funext}: forall x: FSet A, x = ∅ \/ x <> ∅.
|
||||
hinduction.
|
||||
- left; reflexivity.
|
||||
- right. apply non_empty_singleton.
|
||||
- intros x y [G1 | G2] [G3 | G4].
|
||||
+ left. rewrite G1, G3. apply nl.
|
||||
+ right. apply non_empty_union_r; assumption.
|
||||
+ right. apply non_empty_union_l; assumption.
|
||||
+ right. apply non_empty_union_l; assumption.
|
||||
- intros. destruct px, py, pz; apply path_sum; destruct_match_1.
|
||||
+ rewrite p, p0, p1. rewrite nl. rewrite nl. reflexivity.
|
||||
+ assumption.
|
||||
+ rewrite p, p0 in p1. rewrite nl in p1. rewrite comm in p1. rewrite nl in p1.
|
||||
assumption.
|
||||
+ rewrite p in p0. rewrite nl in p0.
|
||||
apply (non_empty_union_l y z) in n. eq_neq_tac.
|
||||
+ rewrite p, p0 in p1. rewrite nr in p1. rewrite nr in p1. assumption.
|
||||
+ rewrite p in p0. rewrite nr in p0.
|
||||
apply (non_empty_union_l x z) in n. eq_neq_tac.
|
||||
+ rewrite p in p0. rewrite nr in p0.
|
||||
apply (non_empty_union_l x y) in n. eq_neq_tac.
|
||||
+ apply (non_empty_union_l x y) in n.
|
||||
apply (non_empty_union_l (x ∪ y) z) in n. eq_neq_tac.
|
||||
- intros. destruct px, py; apply path_sum; destruct_match_1.
|
||||
+ rewrite p, p0; apply union_idem.
|
||||
+ rewrite p in p0. rewrite nr in p0. assumption.
|
||||
+ rewrite p in p0. rewrite nl in p0. assumption.
|
||||
+ apply (non_empty_union_r y x) in n. eq_neq_tac.
|
||||
- intros x px.
|
||||
destruct px. apply path_sum; destruct_match_1.
|
||||
+ assumption.
|
||||
+ apply path_sum; destruct_match_1. assumption.
|
||||
- intros x px.
|
||||
destruct px. apply path_sum; destruct_match_1.
|
||||
+ assumption.
|
||||
+ apply path_sum; destruct_match_1. assumption.
|
||||
- intros. cbn. apply path_sum. destruct_match_1.
|
||||
+ apply (non_empty_singleton x). apply p.
|
||||
Defined.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Lemma union_non_empty `{Funext}:
|
||||
forall X1 X2: FSet A, U X1 X2 <> ∅ -> X1 <> ∅ \/ X2 <> ∅.
|
||||
intros X1 X2 G.
|
||||
specialize (fset_eset_dec X1).
|
||||
intro. destruct X. rewrite p in G. rewrite nl in G.
|
||||
right. assumption. left. apply n.
|
||||
Defined.
|
||||
|
||||
Lemma union_non_empty' `{Funext}:
|
||||
forall X1 X2: FSet A, U X1 X2 <> ∅ ->
|
||||
(X1 <> ∅ /\ X2 = ∅) \/
|
||||
(X1 = ∅ /\ X2 <> ∅) \/
|
||||
(X1 <> ∅ /\ X2 <> ∅ ).
|
||||
intros X1 X2 G.
|
||||
specialize (fset_eset_dec X1).
|
||||
specialize (fset_eset_dec X2).
|
||||
intros H1 H2.
|
||||
destruct H1, H2.
|
||||
- rewrite p, p0 in G. destruct G. apply union_idem.
|
||||
- left; split; assumption.
|
||||
- right. left. split; assumption.
|
||||
- right. right. split; assumption.
|
||||
Defined.
|
||||
|
||||
|
||||
|
||||
End EmptySetProperties.
|
|
@ -0,0 +1,574 @@
|
|||
Require Import HoTT.
|
||||
Require Import HitTactics.
|
||||
Require Import definition.
|
||||
Require Import operations.
|
||||
Require Import properties.
|
||||
Require Import empty_set.
|
||||
Class Antisymmetric {A} (R : relation A) :=
|
||||
antisymmetry : forall x y, R x y -> R y x -> x = y.
|
||||
|
||||
|
||||
Class Total {A} (R : relation A) :=
|
||||
total : forall x y, x = y \/ R x y \/ R y x.
|
||||
|
||||
Class TotalOrder {A} (R : relation A) :=
|
||||
{ TotalOrder_Reflexive : Reflexive R | 2 ;
|
||||
TotalOrder_Antisymmetric : Antisymmetric R | 2;
|
||||
TotalOrder_Transitive : Transitive R | 2;
|
||||
TotalOrder_Total : Total R | 2; }.
|
||||
|
||||
Context {A : Type0}.
|
||||
Context {A_deceq : DecidablePaths A}.
|
||||
Context {R: relation A}.
|
||||
Context {A_ordered : TotalOrder R}.
|
||||
|
||||
|
||||
Ltac eq_neq_tac :=
|
||||
match goal with
|
||||
| [ H: ?x <> E, H': ?x = E |- _ ] => destruct H; assumption
|
||||
end.
|
||||
|
||||
|
||||
Ltac destruct_match_1 :=
|
||||
repeat match goal with
|
||||
| [|- match ?X with | _ => _ end ] => destruct X
|
||||
| [|- ?X = ?Y ] => apply path_ishprop
|
||||
| [ H: ?x <> E |- Empty ] => destruct H
|
||||
| [ H1: ?x = E, H2: ?y = E, H3: ?w ∪ ?q = E |- ?r = E]
|
||||
=> rewrite H1, H2 in H3; rewrite nl in H3; rewrite nl in H3
|
||||
end.
|
||||
|
||||
|
||||
Lemma transport_dom_eq (D1 D2 C: Type) (P: D1 = D2) (f: D1 -> C) :
|
||||
transport (fun T: Type => T -> C) P f = fun y => f (transport (fun X => X) P^ y).
|
||||
Proof.
|
||||
induction P.
|
||||
hott_simpl.
|
||||
Defined.
|
||||
|
||||
Lemma transport_dom_eq_gen (Ty: Type) (D1 D2: Ty) (C: Type) (P: D1 = D2)
|
||||
(Q : Ty -> Type) (f: Q D1 -> C) :
|
||||
transport (fun X: Ty => Q X -> C) P f = fun y => f (transport Q P^ y).
|
||||
Proof.
|
||||
induction P.
|
||||
hott_simpl.
|
||||
Defined.
|
||||
|
||||
Lemma min {HFun: Funext} (x: FSet A): x <> ∅ -> A.
|
||||
Proof.
|
||||
hrecursion x.
|
||||
- intro H. destruct H. reflexivity.
|
||||
- intros. exact a.
|
||||
- intros x y rx ry H.
|
||||
apply union_non_empty' in H.
|
||||
destruct H.
|
||||
+ destruct p. specialize (rx fst). exact rx.
|
||||
+ destruct s.
|
||||
* destruct p. specialize (ry snd). exact ry.
|
||||
* destruct p. specialize (rx fst). specialize (ry snd).
|
||||
destruct (TotalOrder_Total rx ry) as [Heq | [ Hx | Hy ]].
|
||||
** exact rx.
|
||||
** exact rx.
|
||||
** exact ry.
|
||||
- intros. rewrite transport_dom_eq_gen.
|
||||
apply path_forall. intro y0.
|
||||
destruct ( union_non_empty' x y ∪ z
|
||||
(transport (fun X : FSet A => X <> ∅) (assoc x y z)^ y0))
|
||||
as [[ G1 G2] | [[ G3 G4] | [G5 G6]]].
|
||||
+ pose (G2' := G2). apply eset_union_lr in G2'; destruct G2'. cbn.
|
||||
destruct (union_non_empty' x ∪ y z y0) as
|
||||
[[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac.
|
||||
destruct (union_non_empty' x y H'x).
|
||||
** destruct p. assert (G1 = fst0). apply path_forall. intro.
|
||||
apply path_ishprop. rewrite X. reflexivity.
|
||||
** destruct s; destruct p; eq_neq_tac.
|
||||
+ destruct (union_non_empty' y z G4) as
|
||||
[[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac.
|
||||
destruct (union_non_empty' x ∪ y z y0).
|
||||
** destruct p. cbn. destruct (union_non_empty' x y fst).
|
||||
*** destruct p; eq_neq_tac.
|
||||
*** destruct s. destruct p.
|
||||
**** assert (H'x = snd0). apply path_forall. intro.
|
||||
apply path_ishprop. rewrite X. reflexivity.
|
||||
**** destruct p. eq_neq_tac.
|
||||
** destruct s; destruct p; try eq_neq_tac.
|
||||
** destruct (union_non_empty' x ∪ y z y0).
|
||||
*** destruct p. eq_neq_tac.
|
||||
*** destruct s. destruct p.
|
||||
**** assert (H'b = snd). apply path_forall. intro.
|
||||
apply path_ishprop. rewrite X. reflexivity.
|
||||
**** destruct p. assert (x ∪ y = E).
|
||||
rewrite H'a, G3. apply union_idem. eq_neq_tac.
|
||||
** cbn. destruct (TotalOrder_Total (py H'c) (pz H'd)).
|
||||
*** destruct (union_non_empty' x ∪ y z y0).
|
||||
**** destruct p0. eq_neq_tac.
|
||||
**** destruct s.
|
||||
***** destruct p0. rewrite G3, nl in fst. eq_neq_tac.
|
||||
***** destruct p0. destruct (union_non_empty' x y fst).
|
||||
****** destruct p0. eq_neq_tac.
|
||||
****** destruct s.
|
||||
******* destruct p0.
|
||||
destruct (TotalOrder_Total (py snd0) (pz snd)).
|
||||
f_ap. apply path_forall. intro.
|
||||
apply path_ishprop.
|
||||
destruct s. f_ap. apply path_forall. intro.
|
||||
apply path_ishprop.
|
||||
rewrite p. f_ap. apply path_forall. intro.
|
||||
apply path_ishprop.
|
||||
******* destruct p0. eq_neq_tac.
|
||||
*** destruct (union_non_empty' x ∪ y z y0).
|
||||
**** destruct p. eq_neq_tac.
|
||||
**** destruct s0. destruct p. rewrite comm in fst.
|
||||
apply eset_union_l in fst. eq_neq_tac.
|
||||
destruct p.
|
||||
destruct (union_non_empty' x y fst).
|
||||
***** destruct p; eq_neq_tac.
|
||||
***** destruct s0. destruct p.
|
||||
destruct (TotalOrder_Total (py snd0) (pz snd));
|
||||
destruct s; try (f_ap; apply path_forall; intro;
|
||||
apply path_ishprop).
|
||||
rewrite p. f_ap; apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
destruct s0. f_ap; apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
assert (snd0 = H'c). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
assert (snd = H'd). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
rewrite <- X0 in r. rewrite X in r0.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
destruct s0.
|
||||
assert (snd0 = H'c). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
assert (snd = H'd). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
rewrite <- X in r. rewrite X0 in r0.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
f_ap; apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
destruct p; eq_neq_tac.
|
||||
+ cbn. destruct (union_non_empty' y z G6).
|
||||
** destruct p. destruct ( union_non_empty' x ∪ y z y0).
|
||||
*** destruct p. destruct (union_non_empty' x y fst0).
|
||||
**** destruct p; eq_neq_tac.
|
||||
**** destruct s; destruct p. eq_neq_tac.
|
||||
assert (fst1 = G5). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
assert (fst = snd1). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
rewrite X, X0.
|
||||
destruct (TotalOrder_Total (px G5) (py snd1)).
|
||||
reflexivity.
|
||||
destruct s; reflexivity.
|
||||
*** destruct s; destruct p; eq_neq_tac.
|
||||
** destruct (union_non_empty' x ∪ y z y0).
|
||||
*** destruct p. destruct s; destruct p; eq_neq_tac.
|
||||
*** destruct s. destruct p. destruct s0. destruct p.
|
||||
apply eset_union_l in fst0. eq_neq_tac.
|
||||
**** destruct p.
|
||||
assert (snd = snd0). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
|
||||
destruct (union_non_empty' x y fst0).
|
||||
destruct p.
|
||||
assert (fst1 = G5). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
assert (fst = snd1). apply set_path2.
|
||||
***** rewrite X0. rewrite <- X. reflexivity.
|
||||
***** destruct s; destruct p; eq_neq_tac.
|
||||
**** destruct s0. destruct p0. destruct p.
|
||||
***** apply eset_union_l in fst. eq_neq_tac.
|
||||
***** destruct p, p0.
|
||||
assert (snd0 = snd). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
rewrite X.
|
||||
destruct (union_non_empty' x y fst0).
|
||||
destruct p; eq_neq_tac.
|
||||
destruct s. destruct p; eq_neq_tac.
|
||||
destruct p.
|
||||
assert (fst = snd1). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
assert (fst1 = G5). apply path_forall; intro;
|
||||
apply path_ishprop.
|
||||
rewrite <- X0. rewrite X1.
|
||||
destruct (TotalOrder_Total (py fst) (pz snd)).
|
||||
****** rewrite <- p.
|
||||
destruct (TotalOrder_Total (px G5) (py fst)).
|
||||
rewrite <- p0.
|
||||
destruct (TotalOrder_Total (px G5) (px G5)).
|
||||
reflexivity.
|
||||
destruct s; reflexivity.
|
||||
destruct s. destruct (TotalOrder_Total (px G5) (py fst)).
|
||||
reflexivity.
|
||||
destruct s.
|
||||
reflexivity.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
destruct (TotalOrder_Total (py fst) (py fst)).
|
||||
reflexivity.
|
||||
destruct s;
|
||||
reflexivity.
|
||||
****** destruct s.
|
||||
destruct (TotalOrder_Total (px G5) (py fst)).
|
||||
destruct (TotalOrder_Total (px G5) (pz snd)).
|
||||
reflexivity.
|
||||
destruct s.
|
||||
reflexivity. rewrite <- p in r.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
destruct s.
|
||||
destruct ( TotalOrder_Total (px G5) (pz snd)).
|
||||
reflexivity.
|
||||
destruct s. reflexivity.
|
||||
apply (TotalOrder_Transitive (px G5)) in r.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
assumption.
|
||||
destruct (TotalOrder_Total (py fst) (pz snd)). reflexivity.
|
||||
destruct s. reflexivity.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
*******
|
||||
destruct ( TotalOrder_Total (px G5) (py fst)).
|
||||
reflexivity.
|
||||
destruct s. destruct (TotalOrder_Total (px G5) (pz snd)).
|
||||
reflexivity. destruct s; reflexivity.
|
||||
destruct ( TotalOrder_Total (px G5) (pz snd)).
|
||||
rewrite <- p.
|
||||
destruct (TotalOrder_Total (py fst) (px G5)).
|
||||
apply symmetry; assumption.
|
||||
destruct s. rewrite <- p in r.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
reflexivity. destruct s.
|
||||
assert ((py fst) = (pz snd)). apply TotalOrder_Antisymmetric.
|
||||
apply (TotalOrder_Transitive (py fst) (px G5)); assumption.
|
||||
assumption. rewrite X2. assert (px G5 = pz snd).
|
||||
apply TotalOrder_Antisymmetric. assumption.
|
||||
apply (TotalOrder_Transitive (pz snd) (py fst)); assumption.
|
||||
rewrite X3.
|
||||
destruct ( TotalOrder_Total (pz snd) (pz snd)).
|
||||
reflexivity. destruct s; reflexivity.
|
||||
destruct (TotalOrder_Total (py fst) (pz snd)).
|
||||
apply TotalOrder_Antisymmetric. assumption. rewrite p.
|
||||
apply (TotalOrder_Reflexive). destruct s.
|
||||
apply TotalOrder_Antisymmetric; assumption. reflexivity.
|
||||
- intros. rewrite transport_dom_eq_gen.
|
||||
apply path_forall. intro y0. cbn.
|
||||
destruct
|
||||
(union_non_empty' x y
|
||||
(transport (fun X : FSet A => X <> ∅) (comm x y)^ y0)) as
|
||||
[[Hx Hy] | [ [Ha Hb] | [Hc Hd]]];
|
||||
destruct (union_non_empty' y x y0) as
|
||||
[[H'x H'y] | [ [H'a H'b] | [H'c H'd]]];
|
||||
try (eq_neq_tac).
|
||||
assert (Hx = H'b). apply path_forall. intro.
|
||||
apply path_ishprop. rewrite X. reflexivity.
|
||||
assert (Hb = H'x). apply path_forall. intro.
|
||||
apply path_ishprop. rewrite X. reflexivity.
|
||||
assert (Hd = H'c). apply path_forall. intro.
|
||||
apply path_ishprop. rewrite X.
|
||||
assert (H'd = Hc). apply path_forall. intro.
|
||||
apply path_ishprop.
|
||||
rewrite X0. rewrite <- X.
|
||||
destruct
|
||||
(TotalOrder_Total (px Hc) (py Hd)) as [G1 | [G2 | G3]];
|
||||
destruct
|
||||
(TotalOrder_Total (py Hd) (px Hc)) as [T1 | [T2 | T3]];
|
||||
try (assumption);
|
||||
try (reflexivity);
|
||||
try (apply symmetry; assumption);
|
||||
try (apply TotalOrder_Antisymmetric; assumption).
|
||||
|
||||
- intros. rewrite transport_dom_eq_gen.
|
||||
apply path_forall. intro y.
|
||||
destruct (union_non_empty' ∅ x (transport (fun X : FSet A => X <> ∅) (nl x)^ y)).
|
||||
destruct p. eq_neq_tac.
|
||||
destruct s.
|
||||
destruct p.
|
||||
assert (y = snd).
|
||||
apply path_forall. intro.
|
||||
apply path_ishprop. rewrite X. reflexivity.
|
||||
destruct p. destruct fst.
|
||||
- intros. rewrite transport_dom_eq_gen.
|
||||
apply path_forall. intro y.
|
||||
destruct (union_non_empty' x ∅ (transport (fun X : FSet A => X <> ∅) (nr x)^ y)).
|
||||
destruct p. assert (y = fst). apply path_forall. intro.
|
||||
apply path_ishprop. rewrite X. reflexivity.
|
||||
destruct s.
|
||||
destruct p.
|
||||
eq_neq_tac.
|
||||
destruct p.
|
||||
destruct snd.
|
||||
- intros. rewrite transport_dom_eq_gen.
|
||||
apply path_forall. intro y.
|
||||
destruct ( union_non_empty' {|x|} {|x|} (transport (fun X : FSet A => X <> ∅) (idem x)^ y)).
|
||||
reflexivity.
|
||||
destruct s.
|
||||
reflexivity.
|
||||
destruct p.
|
||||
cbn. destruct (TotalOrder_Total x x). reflexivity.
|
||||
destruct s; reflexivity.
|
||||
Defined.
|
||||
|
||||
|
||||
Definition minfset {HFun: Funext} :
|
||||
FSet A -> { Y: (FSet A) & (Y = E) + { a: A & Y = L a } }.
|
||||
intro X.
|
||||
hinduction X.
|
||||
- exists E. left. reflexivity.
|
||||
- intro a. exists (L a). right. exists a. reflexivity.
|
||||
- intros IH1 IH2.
|
||||
destruct IH1 as [R1 HR1].
|
||||
destruct IH2 as [R2 HR2].
|
||||
destruct HR1.
|
||||
destruct HR2.
|
||||
exists E; left. reflexivity.
|
||||
destruct s as [a Ha]. exists (L a). right.
|
||||
exists a. reflexivity.
|
||||
destruct HR2.
|
||||
destruct s as [a Ha].
|
||||
exists (L a). right. exists a. reflexivity.
|
||||
destruct s as [a1 Ha1].
|
||||
destruct s0 as [a2 Ha2].
|
||||
assert (a1 = a2 \/ R a1 a2 \/ R a2 a1).
|
||||
apply TotalOrder_Total.
|
||||
destruct X.
|
||||
exists (L a1). right. exists a1. reflexivity.
|
||||
destruct s.
|
||||
exists (L a1). right. exists a1. reflexivity.
|
||||
exists (L a2). right. exists a2. reflexivity.
|
||||
- cbn. intros R1 R2 R3.
|
||||
destruct R1 as [Res1 HR1].
|
||||
destruct HR1 as [HR1E | HR1S].
|
||||
destruct R2 as [Res2 HR2].
|
||||
destruct HR2 as [HR2E | HR2S].
|
||||
destruct R3 as [Res3 HR3].
|
||||
destruct HR3 as [HR3E | HR3S].
|
||||
+ cbn. reflexivity.
|
||||
+ cbn. reflexivity.
|
||||
+ cbn. destruct R3 as [Res3 HR3].
|
||||
destruct HR3 as [HR3E | HR3S].
|
||||
* cbn. reflexivity.
|
||||
* destruct HR2S as [a2 Ha2].
|
||||
destruct HR3S as [a3 Ha3].
|
||||
destruct (TotalOrder_Total a2 a3).
|
||||
** cbn. reflexivity.
|
||||
** destruct s. cbn. reflexivity.
|
||||
cbn. reflexivity.
|
||||
+ destruct HR1S as [a1 Ha1].
|
||||
destruct R2 as [Res2 HR2].
|
||||
destruct HR2 as [HR2E | HR2S].
|
||||
destruct R3 as [Res3 HR3].
|
||||
destruct HR3 as [HR3E | HR3S].
|
||||
* cbn. reflexivity.
|
||||
* destruct HR3S as [a3 Ha3].
|
||||
destruct (TotalOrder_Total a1 a3).
|
||||
reflexivity.
|
||||
destruct s; reflexivity.
|
||||
* destruct HR2S as [a2 Ha2].
|
||||
destruct R3 as [Res3 HR3].
|
||||
destruct HR3 as [HR3E | HR3S].
|
||||
cbn. destruct (TotalOrder_Total a1 a2).
|
||||
cbn. reflexivity.
|
||||
destruct s.
|
||||
cbn. reflexivity.
|
||||
cbn. reflexivity.
|
||||
destruct HR3S as [a3 Ha3].
|
||||
destruct (TotalOrder_Total a2 a3).
|
||||
** rewrite p.
|
||||
destruct (TotalOrder_Total a1 a3).
|
||||
rewrite p0.
|
||||
destruct ( TotalOrder_Total a3 a3).
|
||||
reflexivity.
|
||||
destruct s; reflexivity.
|
||||
destruct s. cbn.
|
||||
destruct (TotalOrder_Total a1 a3).
|
||||
reflexivity.
|
||||
destruct s. reflexivity.
|
||||
assert (a1 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity.
|
||||
cbn. destruct (TotalOrder_Total a3 a3).
|
||||
reflexivity.
|
||||
destruct s; reflexivity.
|
||||
** destruct s.
|
||||
*** cbn. destruct (TotalOrder_Total a1 a2).
|
||||
cbn. destruct (TotalOrder_Total a1 a3).
|
||||
reflexivity.
|
||||
destruct s. reflexivity.
|
||||
rewrite <- p in r.
|
||||
assert (a1 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity.
|
||||
destruct s. cbn.
|
||||
destruct (TotalOrder_Total a1 a3).
|
||||
reflexivity.
|
||||
destruct s. reflexivity.
|
||||
assert (R a1 a3).
|
||||
apply (TotalOrder_Transitive a1 a2); assumption.
|
||||
assert (a1 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X0. reflexivity.
|
||||
cbn. destruct (TotalOrder_Total a2 a3).
|
||||
reflexivity.
|
||||
destruct s.
|
||||
reflexivity.
|
||||
assert (a2 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity.
|
||||
*** cbn. destruct (TotalOrder_Total a1 a3).
|
||||
rewrite p. destruct (TotalOrder_Total a3 a2).
|
||||
cbn. destruct (TotalOrder_Total a3 a3).
|
||||
reflexivity. destruct s; reflexivity.
|
||||
destruct s. cbn.
|
||||
destruct (TotalOrder_Total a3 a3).
|
||||
reflexivity. destruct s; reflexivity.
|
||||
cbn. destruct (TotalOrder_Total a2 a3).
|
||||
rewrite p0.
|
||||
reflexivity.
|
||||
destruct s.
|
||||
assert (a2 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity. reflexivity.
|
||||
destruct s.
|
||||
cbn.
|
||||
destruct (TotalOrder_Total a1 a2).
|
||||
cbn.
|
||||
destruct (TotalOrder_Total a1 a3).
|
||||
reflexivity.
|
||||
assert (a1 = a3).
|
||||
apply TotalOrder_Antisymmetric. assumption.
|
||||
rewrite <- p in r. assumption.
|
||||
destruct s. reflexivity. rewrite X. reflexivity.
|
||||
destruct s. cbn.
|
||||
destruct (TotalOrder_Total a1 a3). reflexivity.
|
||||
destruct s. reflexivity.
|
||||
assert (a1 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity.
|
||||
cbn. destruct (TotalOrder_Total a2 a3).
|
||||
rewrite p in r1.
|
||||
assert (a2 = a1).
|
||||
transitivity a3.
|
||||
assumption.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity.
|
||||
destruct s.
|
||||
assert (a1 = a2).
|
||||
apply TotalOrder_Antisymmetric.
|
||||
apply (TotalOrder_Transitive a1 a3); assumption.
|
||||
assumption.
|
||||
rewrite X. reflexivity.
|
||||
assert (a1 = a3).
|
||||
apply TotalOrder_Antisymmetric.
|
||||
assumption.
|
||||
apply (TotalOrder_Transitive a3 a2); assumption.
|
||||
rewrite X. reflexivity.
|
||||
destruct ( TotalOrder_Total a1 a2).
|
||||
cbn.
|
||||
destruct (TotalOrder_Total a1 a3).
|
||||
rewrite p0.
|
||||
reflexivity.
|
||||
destruct s.
|
||||
assert (a1 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity. reflexivity.
|
||||
destruct s.
|
||||
cbn.
|
||||
destruct (TotalOrder_Total a1 a3 ).
|
||||
rewrite p.
|
||||
reflexivity.
|
||||
destruct s.
|
||||
assert (a1 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity. reflexivity.
|
||||
cbn.
|
||||
destruct (TotalOrder_Total a1 a3 ).
|
||||
assert (a2 = a3).
|
||||
rewrite p in r1.
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. destruct (TotalOrder_Total a3 a3). reflexivity.
|
||||
destruct s; reflexivity.
|
||||
destruct s.
|
||||
destruct (TotalOrder_Total a2 a3).
|
||||
rewrite p.
|
||||
reflexivity.
|
||||
destruct s.
|
||||
assert (a2 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity.
|
||||
reflexivity.
|
||||
cbn. destruct (TotalOrder_Total a2 a3).
|
||||
rewrite p.
|
||||
reflexivity.
|
||||
destruct s.
|
||||
assert (a2 = a3).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X. reflexivity. reflexivity.
|
||||
- cbn. intros R1 R2.
|
||||
destruct R1 as [La1 HR1].
|
||||
destruct HR1 as [HR1E | HR1S].
|
||||
destruct R2 as [La2 HR2].
|
||||
destruct HR2 as [HR2E | HR2S].
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
destruct R2 as [La2 HR2].
|
||||
destruct HR2 as [HR2E | HR2S].
|
||||
reflexivity.
|
||||
destruct HR1S as [a1 Ha1].
|
||||
destruct HR2S as [a2 Ha2].
|
||||
destruct (TotalOrder_Total a1 a2).
|
||||
rewrite p.
|
||||
destruct (TotalOrder_Total a2 a2).
|
||||
reflexivity.
|
||||
destruct s; reflexivity.
|
||||
destruct s.
|
||||
destruct (TotalOrder_Total a2 a1).
|
||||
rewrite p.
|
||||
reflexivity.
|
||||
destruct s.
|
||||
assert (a1 = a2).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
destruct (TotalOrder_Total a2 a1).
|
||||
rewrite p.
|
||||
reflexivity.
|
||||
destruct s.
|
||||
reflexivity.
|
||||
assert (a1 = a2).
|
||||
apply TotalOrder_Antisymmetric; assumption.
|
||||
rewrite X.
|
||||
reflexivity.
|
||||
- cbn. intro R. destruct R as [La HR].
|
||||
destruct HR. rewrite <- p. reflexivity.
|
||||
destruct s as [a1 H].
|
||||
apply (path_sigma' _ H^).
|
||||
rewrite transport_sum.
|
||||
f_ap.
|
||||
rewrite transport_sigma.
|
||||
simpl.
|
||||
simple refine (path_sigma' _ _ _ ).
|
||||
apply transport_const.
|
||||
apply set_path2.
|
||||
|
||||
- intros R. cbn.
|
||||
destruct R as [ R HR].
|
||||
destruct HR as [HE | Ha ].
|
||||
rewrite <- HE. reflexivity.
|
||||
destruct Ha as [a Ha].
|
||||
apply (path_sigma' _ Ha^).
|
||||
rewrite transport_sum.
|
||||
f_ap.
|
||||
rewrite transport_sigma.
|
||||
simpl.
|
||||
simple refine (path_sigma' _ _ _ ).
|
||||
apply transport_const.
|
||||
apply set_path2.
|
||||
- cbn. intro.
|
||||
destruct (TotalOrder_Total x x).
|
||||
reflexivity.
|
||||
destruct s.
|
||||
reflexivity.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
Require Import HoTT HitTactics.
|
||||
Require Import definition operations.
|
||||
Require Export definition operations.
|
||||
|
||||
Section properties.
|
||||
|
||||
|
@ -20,8 +20,7 @@ try (intros ; apply set_path2) ; cbn.
|
|||
rewrite P.
|
||||
rewrite (comm y x).
|
||||
rewrite <- (assoc x y y).
|
||||
rewrite Q.
|
||||
reflexivity.
|
||||
f_ap.
|
||||
Defined.
|
||||
|
||||
|
||||
|
@ -184,15 +183,17 @@ hinduction; try (intros; apply set_path2).
|
|||
* reflexivity.
|
||||
* contradiction (n idpath).
|
||||
- intros X Y IHX IHY.
|
||||
f_ap;
|
||||
unfold intersection in *.
|
||||
rewrite comprehension_or.
|
||||
rewrite comprehension_or.
|
||||
+ transitivity (U (comprehension (fun a => isIn a X) X) (comprehension (fun a => isIn a Y) X)).
|
||||
apply comprehension_or.
|
||||
rewrite IHX.
|
||||
rewrite IHY.
|
||||
rewrite comprehension_subset.
|
||||
rewrite (comm X).
|
||||
rewrite comprehension_subset.
|
||||
reflexivity.
|
||||
apply comprehension_subset.
|
||||
+ transitivity (U (comprehension (fun a => isIn a X) Y) (comprehension (fun a => isIn a Y) Y)).
|
||||
apply comprehension_or.
|
||||
rewrite IHY.
|
||||
apply comprehension_subset.
|
||||
Defined.
|
||||
|
||||
(** assorted lattice laws *)
|
||||
|
@ -270,8 +271,6 @@ hinduction x; try (intros ; apply set_path2) ; cbn.
|
|||
reflexivity.
|
||||
Defined.
|
||||
|
||||
|
||||
|
||||
Theorem intersection_assoc (X Y Z: FSet A) :
|
||||
intersection X (intersection Y Z) = intersection (intersection X Y) Z.
|
||||
Proof.
|
||||
|
@ -314,14 +313,12 @@ hinduction; try (intros ; apply set_path2).
|
|||
* reflexivity.
|
||||
* contradiction (n idpath).
|
||||
- intros X1 X2 P Q.
|
||||
rewrite comprehension_or.
|
||||
rewrite comprehension_or.
|
||||
rewrite P.
|
||||
f_ap; (etransitivity; [ apply comprehension_or |]).
|
||||
rewrite P. rewrite (comm X1).
|
||||
apply comprehension_subset.
|
||||
|
||||
rewrite Q.
|
||||
rewrite comprehension_subset.
|
||||
rewrite (comm X1).
|
||||
rewrite comprehension_subset.
|
||||
reflexivity.
|
||||
apply comprehension_subset.
|
||||
Defined.
|
||||
|
||||
|
||||
|
@ -338,13 +335,16 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
|
|||
rewrite p.
|
||||
rewrite comprehension_subset.
|
||||
reflexivity.
|
||||
- intros. unfold intersection. (* TODO isIn is simplified too much *)
|
||||
rewrite comprehension_or.
|
||||
rewrite comprehension_or.
|
||||
(* rewrite intersection_La. *)
|
||||
- intros.
|
||||
assert (Y = intersection (U (L a) Y) Y) as HY.
|
||||
{ unfold intersection. symmetry.
|
||||
transitivity (U (comprehension (fun x => isIn x (L a)) Y) (comprehension (fun x => isIn x Y) Y)).
|
||||
apply comprehension_or.
|
||||
rewrite comprehension_all.
|
||||
apply comprehension_subset. }
|
||||
rewrite <- HY.
|
||||
admit.
|
||||
- unfold intersection.
|
||||
cbn.
|
||||
intros Z1 Z2 P Q.
|
||||
rewrite comprehension_or.
|
||||
assert (U (U (comprehension (fun a : A => isIn a Z1) X2)
|
||||
|
@ -358,12 +358,13 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
|
|||
rewrite <- assoc.
|
||||
rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
|
||||
rewrite Q.
|
||||
cbn.
|
||||
rewrite
|
||||
(comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
|
||||
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
|
||||
rewrite assoc.
|
||||
rewrite P.
|
||||
rewrite <- assoc.
|
||||
rewrite <- assoc. cbn.
|
||||
rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
|
||||
rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
|
||||
rewrite <- assoc.
|
||||
|
@ -436,17 +437,20 @@ hrecursion X; try (intros ; apply set_path2).
|
|||
rewrite <- Q.
|
||||
Admitted.
|
||||
|
||||
Theorem union_isIn (X Y : FSet A) (a : A) : isIn a (U X Y) = orb (isIn a X) (isIn a Y).
|
||||
Proof.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
(* Properties about subset relation. *)
|
||||
Lemma subsect_intersection `{Funext} (X Y : FSet A) :
|
||||
X ⊆ Y = true -> U X Y = Y.
|
||||
Lemma subset_union `{Funext} (X Y : FSet A) :
|
||||
subset X Y = true -> U X Y = Y.
|
||||
Proof.
|
||||
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
||||
- intros. apply nl.
|
||||
- intros a. hinduction Y;
|
||||
try (intros; apply path_forall; intro; apply set_path2).
|
||||
(*intros. apply equiv_hprop_allpath.*)
|
||||
+ intro. cbn. contradiction (false_ne_true).
|
||||
+ intro. contradiction (false_ne_true).
|
||||
+ intros. destruct (dec (a = a0)).
|
||||
rewrite p; apply idem.
|
||||
contradiction (false_ne_true).
|
||||
|
@ -454,31 +458,183 @@ hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
|||
intro Ho.
|
||||
destruct (isIn a X1);
|
||||
destruct (isIn a X2).
|
||||
specialize (IH1 idpath).
|
||||
specialize (IH2 idpath).
|
||||
rewrite assoc. rewrite IH1. reflexivity.
|
||||
specialize (IH1 idpath).
|
||||
rewrite assoc. rewrite IH1. reflexivity.
|
||||
specialize (IH2 idpath).
|
||||
rewrite assoc. rewrite (comm (L a)). rewrite <- assoc. rewrite IH2.
|
||||
reflexivity.
|
||||
cbn in Ho. contradiction (false_ne_true).
|
||||
* specialize (IH1 idpath).
|
||||
rewrite assoc. f_ap.
|
||||
* specialize (IH1 idpath).
|
||||
rewrite assoc. f_ap.
|
||||
* specialize (IH2 idpath).
|
||||
rewrite (comm X1 X2).
|
||||
rewrite assoc. f_ap.
|
||||
* contradiction (false_ne_true).
|
||||
- intros X1 X2 IH1 IH2 G.
|
||||
destruct (subset X1 Y);
|
||||
destruct (subset X2 Y).
|
||||
specialize (IH1 idpath).
|
||||
* specialize (IH1 idpath).
|
||||
specialize (IH2 idpath).
|
||||
rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
|
||||
specialize (IH1 idpath).
|
||||
apply IH2 in G.
|
||||
rewrite <- assoc. rewrite G. rewrite IH1. reflexivity.
|
||||
specialize (IH2 idpath).
|
||||
apply IH1 in G.
|
||||
rewrite <- assoc. rewrite IH2. rewrite G. reflexivity.
|
||||
specialize (IH1 G). specialize (IH2 G).
|
||||
rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
|
||||
rewrite <- assoc. rewrite IH2. apply IH1.
|
||||
* contradiction (false_ne_true).
|
||||
* contradiction (false_ne_true).
|
||||
* contradiction (false_ne_true).
|
||||
Defined.
|
||||
|
||||
Theorem
|
||||
Lemma eq1 (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
|
||||
Proof.
|
||||
unshelve eapply BuildEquiv.
|
||||
{ intro H. rewrite H. split; apply union_idem. }
|
||||
unshelve esplit.
|
||||
{ intros [H1 H2]. etransitivity. apply H1^.
|
||||
rewrite comm. apply H2. }
|
||||
intro; apply path_prod; apply set_path2.
|
||||
all: intro; apply set_path2.
|
||||
Defined.
|
||||
|
||||
|
||||
Lemma subset_union_l `{Funext} X :
|
||||
forall Y, subset X (U X Y) = true.
|
||||
hinduction X;
|
||||
try (intros; apply path_forall; intro; apply set_path2).
|
||||
- reflexivity.
|
||||
- intros a Y. destruct (dec (a = a)).
|
||||
* reflexivity.
|
||||
* by contradiction n.
|
||||
- intros X1 X2 HX1 HX2 Y.
|
||||
enough (subset X1 (U (U X1 X2) Y) = true).
|
||||
enough (subset X2 (U (U X1 X2) Y) = true).
|
||||
rewrite X. rewrite X0. reflexivity.
|
||||
{ rewrite (comm X1 X2).
|
||||
rewrite <- (assoc X2 X1 Y).
|
||||
apply (HX2 (U X1 Y)). }
|
||||
{ rewrite <- (assoc X1 X2 Y). apply (HX1 (U X2 Y)). }
|
||||
Defined.
|
||||
|
||||
Lemma subset_union_equiv `{Funext}
|
||||
: forall X Y : FSet A, subset X Y = true <~> U X Y = Y.
|
||||
Proof.
|
||||
intros X Y.
|
||||
unshelve eapply BuildEquiv.
|
||||
apply subset_union.
|
||||
unshelve esplit.
|
||||
{ intros HXY. rewrite <- HXY. clear HXY.
|
||||
apply subset_union_l. }
|
||||
all: intro; apply set_path2.
|
||||
Defined.
|
||||
|
||||
Lemma eq_subset `{Funext} (X Y : FSet A) :
|
||||
X = Y <~> ((subset Y X = true) * (subset X Y = true)).
|
||||
Proof.
|
||||
transitivity ((U Y X = X) * (U X Y = Y)).
|
||||
apply eq1.
|
||||
symmetry.
|
||||
eapply equiv_functor_prod'; apply subset_union_equiv.
|
||||
Defined.
|
||||
|
||||
Lemma subset_isIn `{FE : Funext} (X Y : FSet A) :
|
||||
(forall (a : A), isIn a X = true -> isIn a Y = true)
|
||||
<-> (subset X Y = true).
|
||||
Proof.
|
||||
split.
|
||||
- hinduction X ; try (intros ; apply path_forall ; intro ; apply set_path2).
|
||||
* intros ; reflexivity.
|
||||
* intros a H.
|
||||
apply H.
|
||||
destruct (dec (a = a)).
|
||||
+ reflexivity.
|
||||
+ contradiction (n idpath).
|
||||
* intros X1 X2 H1 H2 H.
|
||||
enough (subset X1 Y = true).
|
||||
rewrite X.
|
||||
enough (subset X2 Y = true).
|
||||
rewrite X0.
|
||||
reflexivity.
|
||||
+ apply H2.
|
||||
intros a Ha.
|
||||
apply H.
|
||||
rewrite Ha.
|
||||
destruct (isIn a X1) ; reflexivity.
|
||||
+ apply H1.
|
||||
intros a Ha.
|
||||
apply H.
|
||||
rewrite Ha.
|
||||
reflexivity.
|
||||
- hinduction X .
|
||||
* intros. contradiction (false_ne_true X0).
|
||||
* intros b H a.
|
||||
destruct (dec (a = b)).
|
||||
+ intros ; rewrite p ; apply H.
|
||||
+ intros X ; contradiction (false_ne_true X).
|
||||
* intros X1 X2.
|
||||
intros IH1 IH2 H1 a H2.
|
||||
destruct (subset X1 Y) ; destruct (subset X2 Y);
|
||||
cbv in H1; try by contradiction false_ne_true.
|
||||
specialize (IH1 idpath a). specialize (IH2 idpath a).
|
||||
destruct (isIn a X1); destruct (isIn a X2);
|
||||
cbv in H2; try by contradiction false_ne_true.
|
||||
by apply IH1.
|
||||
by apply IH1.
|
||||
by apply IH2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall).
|
||||
intros; intro; intros; apply set_path2.
|
||||
* repeat (intro; intros; apply path_forall);
|
||||
intros; intro; intros; apply set_path2.
|
||||
Defined.
|
||||
|
||||
Lemma HPropEquiv (X Y : Type) (P : IsHProp X) (Q : IsHProp Y) :
|
||||
(X <-> Y) -> (X <~> Y).
|
||||
Proof.
|
||||
intros [f g].
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
apply f.
|
||||
simple refine (BuildIsEquiv _ _ _ _ _ _ _).
|
||||
- apply g.
|
||||
- unfold Sect.
|
||||
intro x.
|
||||
apply Q.
|
||||
- unfold Sect.
|
||||
intro x.
|
||||
apply P.
|
||||
- intros.
|
||||
apply set_path2.
|
||||
Defined.
|
||||
|
||||
Theorem fset_ext `{Funext} (X Y : FSet A) :
|
||||
X = Y <~> (forall (a : A), isIn a X = isIn a Y).
|
||||
Proof.
|
||||
etransitivity. apply eq_subset.
|
||||
transitivity
|
||||
((forall a, isIn a Y = true -> isIn a X = true)
|
||||
*(forall a, isIn a X = true -> isIn a Y = true)).
|
||||
- eapply equiv_functor_prod'.
|
||||
apply HPropEquiv.
|
||||
exact _.
|
||||
exact _.
|
||||
split ; apply subset_isIn.
|
||||
apply HPropEquiv.
|
||||
exact _.
|
||||
exact _.
|
||||
split ; apply subset_isIn.
|
||||
- apply HPropEquiv.
|
||||
exact _.
|
||||
exact _.
|
||||
split.
|
||||
* intros [H1 H2 a].
|
||||
specialize (H1 a) ; specialize (H2 a).
|
||||
destruct (isIn a X).
|
||||
+ symmetry ; apply (H2 idpath).
|
||||
+ destruct (isIn a Y).
|
||||
{ apply (H1 idpath). }
|
||||
{ reflexivity. }
|
||||
* intros H1.
|
||||
split ; intro a ; intro H2.
|
||||
+ rewrite (H1 a).
|
||||
apply H2.
|
||||
+ rewrite <- (H1 a).
|
||||
apply H2.
|
||||
Defined.
|
||||
|
||||
End properties.
|
Loading…
Reference in New Issue