trailing white spaces

This commit is contained in:
Leon Gondelman 2017-05-26 12:28:07 +02:00
parent 140b02e9f4
commit f8ed41e5fe
2 changed files with 41 additions and 39 deletions

View File

@ -19,7 +19,6 @@ hrecursion.
- intros a'. compute. destruct (A_deceq a a'); reflexivity.
Defined.
Infix "" := isIn (at level 9, right associativity).
Definition comprehension :
(A -> Bool) -> FSet A -> FSet A.
@ -54,15 +53,16 @@ Proof.
intros X Y.
hrecursion X.
- exact true.
- exact (fun a => (a Y)).
- exact (fun a => (isIn a Y)).
- exact andb.
- intros. compute. destruct x; reflexivity.
- intros x y; compute; destruct x, y; reflexivity.
- intros x; compute; destruct x; reflexivity.
- intros x; compute; destruct x; reflexivity.
- intros x; cbn; destruct (x Y); reflexivity.
- intros x; cbn; destruct (isIn x Y); reflexivity.
Defined.
Notation "" := subset.
End operations.
Infix "" := isIn (at level 9, right associativity).
Infix "" := subset (at level 10, right associativity).

View File

@ -9,7 +9,7 @@ Context {A_deceq : DecidablePaths A}.
(** union properties *)
Theorem union_idem : forall x: FSet A, U x x = x.
Proof.
hinduction;
hinduction;
try (intros ; apply set_path2) ; cbn.
- apply nl.
- apply idem.
@ -24,24 +24,24 @@ try (intros ; apply set_path2) ; cbn.
reflexivity.
Defined.
(** isIn properties *)
Lemma isIn_singleton_eq (a b: A) : isIn a (L b) = true -> a = b.
Proof. unfold isIn. simpl.
Proof. unfold isIn. simpl.
destruct (dec (a = b)). intro. apply p.
intro X.
intro X.
contradiction (false_ne_true X).
Defined.
Lemma isIn_empty_false (a: A) : isIn a E = true -> Empty.
Proof.
Proof.
cbv. intro X.
contradiction (false_ne_true X).
contradiction (false_ne_true X).
Defined.
Lemma isIn_union (a: A) (X Y: FSet A) :
Lemma isIn_union (a: A) (X Y: FSet A) :
isIn a (U X Y) = (isIn a X || isIn a Y)%Bool.
Proof. reflexivity. Qed.
Proof. reflexivity. Qed.
(** comprehension properties *)
Lemma comprehension_false Y : comprehension (fun a => isIn a E) Y = E.
@ -58,20 +58,20 @@ hrecursion Y; try (intros; apply set_path2).
Defined.
Theorem comprehension_or : forall ϕ ψ (x: FSet A),
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x)
(comprehension ψ x).
Proof.
intros ϕ ψ.
hinduction; try (intros; apply set_path2).
hinduction; try (intros; apply set_path2).
- cbn. symmetry ; apply nl.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply idem.
* apply nr.
* apply nr.
* apply nl.
* apply nl.
- simpl. intros x y P Q.
cbn.
cbn.
rewrite P.
rewrite Q.
rewrite <- assoc.
@ -105,8 +105,8 @@ Defined.
(** intersection properties *)
Lemma intersection_0l: forall X: FSet A, intersection E X = E.
Proof.
hinduction;
Proof.
hinduction;
try (intros ; apply set_path2).
- reflexivity.
- intro a.
@ -144,7 +144,7 @@ hinduction; try (intros ; apply set_path2).
destruct (isIn a x) ; destruct (isIn a y).
* apply idem.
* apply nr.
* apply nl.
* apply nl.
* apply nl.
Defined.
@ -163,7 +163,7 @@ hrecursion X; try (intros; apply set_path2).
* destruct (dec (b = a)) as [pb|]; [|reflexivity].
by contradiction npa.
+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
rewrite IH1.
rewrite IH1.
rewrite IH2.
symmetry.
apply (comprehension_or (fun a => isIn a Y1) (fun a => isIn a Y2) (L a)).
@ -171,7 +171,7 @@ hrecursion X; try (intros; apply set_path2).
cbn.
unfold intersection in *.
rewrite <- IH1.
rewrite <- IH2.
rewrite <- IH2.
apply comprehension_or.
Defined.
@ -196,7 +196,7 @@ hinduction; try (intros; apply set_path2).
Defined.
(** assorted lattice laws *)
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A,
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A,
intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
Proof.
hinduction; try (intros ; apply set_path2) ; cbn.
@ -266,7 +266,7 @@ hinduction x; try (intros ; apply set_path2) ; cbn.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ;
destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ;
reflexivity.
Defined.
@ -292,7 +292,7 @@ hinduction X; try (intros ; apply set_path2).
+ reflexivity.
+ reflexivity.
* rewrite intersection_0l.
reflexivity.
reflexivity.
- unfold intersection. cbn.
intros X1 X2 P Q.
rewrite comprehension_or.
@ -324,7 +324,7 @@ hinduction; try (intros ; apply set_path2).
reflexivity.
Defined.
Theorem distributive_U_int (X1 X2 Y : FSet A) :
U (intersection X1 X2) Y = intersection (U X1 Y) (U X2 Y).
Proof.
@ -347,9 +347,9 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
cbn.
intros Z1 Z2 P Q.
rewrite comprehension_or.
assert (U (U (comprehension (fun a : A => isIn a Z1) X2)
assert (U (U (comprehension (fun a : A => isIn a Z1) X2)
(comprehension (fun a : A => isIn a Z2) X2))
Y = U (U (comprehension (fun a : A => isIn a Z1) X2)
Y = U (U (comprehension (fun a : A => isIn a Z1) X2)
(comprehension (fun a : A => isIn a Z2) X2))
(U Y Y)).
rewrite (union_idem Y).
@ -358,7 +358,7 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
rewrite <- assoc.
rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
rewrite Q.
rewrite
rewrite
(comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
rewrite assoc.
@ -369,11 +369,11 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
rewrite <- assoc.
rewrite assoc.
enough (C : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) X2)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2))
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2))
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) X2)).
rewrite C.
rewrite C.
enough (D : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y))
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y))
= (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) Y)).
rewrite D.
reflexivity.
@ -438,12 +438,12 @@ Admitted.
(* Properties about subset relation. *)
Lemma subsect_intersection `{Funext} (X Y : FSet A) :
subset X Y = true -> U X Y = Y.
Lemma subsect_intersection `{Funext} (X Y : FSet A) :
X Y = true -> U X Y = Y.
Proof.
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
- intros. apply nl.
- intros a. hinduction Y;
- intros a. hinduction Y;
try (intros; apply path_forall; intro; apply set_path2).
(*intros. apply equiv_hprop_allpath.*)
+ intro. cbn. contradiction (false_ne_true).
@ -460,10 +460,10 @@ hinduction X; try (intros; apply path_forall; intro; apply set_path2).
specialize (IH1 idpath).
rewrite assoc. rewrite IH1. reflexivity.
specialize (IH2 idpath).
rewrite assoc. rewrite (comm (L a)). rewrite <- assoc. rewrite IH2.
rewrite assoc. rewrite (comm (L a)). rewrite <- assoc. rewrite IH2.
reflexivity.
cbn in Ho. contradiction (false_ne_true).
- intros X1 X2 IH1 IH2 G.
cbn in Ho. contradiction (false_ne_true).
- intros X1 X2 IH1 IH2 G.
destruct (subset X1 Y);
destruct (subset X2 Y).
specialize (IH1 idpath).
@ -479,4 +479,6 @@ hinduction X; try (intros; apply path_forall; intro; apply set_path2).
rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
Defined.
End properties.
Theorem
End properties.