first step toward cons-union iso: construction of min function for FSet A, where A is Totally Ordered. To construct min, various lemmas about empty set are needed. This min function is constructed in a very inefficient way w.r.t. proofs of assoc, comm, etc.

This commit is contained in:
Leon Gondelman 2017-06-03 00:08:12 +02:00
parent f8ed41e5fe
commit 0d210cae04
5 changed files with 1054 additions and 91 deletions

View File

@ -3,3 +3,5 @@
definition.v
operations.v
properties.v
empty_set.v
ordered.v

View File

@ -190,3 +190,7 @@ Instance FSet_recursion A : HitRecursion (FSet A) := {
H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
End FSet.
Notation "{| x |}" := (L x).
Infix "" := U (at level 8, right associativity).
Notation "" := E.

227
FiniteSets/empty_set.v Normal file
View File

@ -0,0 +1,227 @@
Require Import HoTT.
Require Import HitTactics.
Require Import definition.
Require Import operations.
Require Import properties.
Ltac destruct_match := repeat
match goal with
| [|- match ?X with | _ => _ end ] => destruct X
end.
Ltac destruct_match_1 :=
repeat match goal with
| [|- match ?X with | _ => _ end ] => destruct X
| [|- ?X = ?Y ] => apply path_ishprop
| [ H: ?x <> E |- Empty ] => destruct H
| [ H1: ?x = E, H2: ?y = E, H3: ?w ?q = E |- ?r = E]
=> rewrite H1, H2 in H3; rewrite nl in H3; rewrite nl in H3
end.
Ltac eq_neq_tac :=
match goal with
| [ H: ?x <> E, H': ?x = E |- _ ] => destruct H; assumption
end.
Section EmptySetProperties.
Context {A : Type}.
Context {A_deceq : DecidablePaths A}.
(*Should go to properties *)
Lemma union_subset `{Funext} :
forall x y z: FSet A, x y z = true -> x z = true /\ y z = true.
intros x y z Hu.
split.
- eapply subset_isIn. intros a Ha.
eapply subset_isIn in Hu.
+ instantiate (1 := a) in Hu.
assumption.
+ transitivity (a x || a y)%Bool .
apply union_isIn.
rewrite Ha. cbn; reflexivity.
- eapply subset_isIn. intros a Ha.
eapply subset_isIn in Hu.
+ instantiate (1 := a) in Hu.
assumption.
+ rewrite comm. transitivity (a y || a x)%Bool .
apply union_isIn.
rewrite Ha. cbn. reflexivity.
Defined.
Lemma eset_subset_l `{Funext} : forall x: FSet A, x = true -> x = .
intros x He.
apply eq_subset.
split.
- cbn; reflexivity.
- assumption.
Defined.
Lemma eset_subset_r `{Funext} : forall x: FSet A, x = -> x = true.
intros x He.
apply eq_subset. apply symmetry. assumption.
Defined.
Lemma subset_transitive `{Funext}:
forall x y z, x y = true -> y z = true -> x z = true.
intros.
Admitted.
Lemma eset_union_l `{Funext} : forall x y: FSet A, x y = -> x = .
Proof.
intros.
assert (x (x y) = true).
apply subset_union_equiv. rewrite assoc. rewrite (union_idem x). reflexivity.
apply eset_subset_r in X.
assert (x = true).
apply (subset_transitive x (U x y)); assumption.
apply eset_subset_l.
assumption.
Defined.
Lemma eset_union_lr `{Funext} :
forall x y: FSet A, x y = -> ((x = ) /\ (y = )).
Proof.
intros.
split.
apply eset_union_l in X; assumption.
rewrite comm in X.
apply eset_union_l in X. assumption.
Defined.
Lemma non_empty_union_l `{Funext} :
forall x y: FSet A, x <> E -> x y <> E.
intros x y He.
intro Hu.
apply He.
apply eq_subset in Hu.
destruct Hu as [_ H1].
apply union_subset in H1.
apply eset_subset_l.
destruct H1.
assumption.
Defined.
Lemma non_empty_union_r `{Funext} :
forall x y: FSet A, y <> E -> x y <> E.
intros x y He.
intro Hu.
apply He.
apply eq_subset in Hu.
destruct Hu as [_ H1].
apply union_subset in H1.
apply eset_subset_l.
destruct H1.
assumption.
Defined.
Theorem contrapositive : forall P Q : Type,
(P -> Q) -> (not Q -> not P) .
Proof.
intros p q H1 H2.
unfold "~".
intro H3.
apply H1 in H3. apply H2 in H3. assumption.
Defined.
Lemma non_empty_singleton : forall a: A, L a <> E.
intros a H.
enough (false = true).
contradiction (false_ne_true X).
transitivity (isIn a E).
cbn. reflexivity.
transitivity (a (L a)).
apply (ap (fun x => a x) H^) .
cbn. destruct (dec (a = a)).
reflexivity.
destruct n.
reflexivity.
Defined.
(* Lemma aux `{Funext}: forall x: FSet A, forall p q: x = ∅ -> False, p = q.
intros. apply path_forall. intro.
apply path_ishprop.
Defined.*)
Lemma fset_eset_dec `{Funext}: forall x: FSet A, x = \/ x <> .
hinduction.
- left; reflexivity.
- right. apply non_empty_singleton.
- intros x y [G1 | G2] [G3 | G4].
+ left. rewrite G1, G3. apply nl.
+ right. apply non_empty_union_r; assumption.
+ right. apply non_empty_union_l; assumption.
+ right. apply non_empty_union_l; assumption.
- intros. destruct px, py, pz; apply path_sum; destruct_match_1.
+ rewrite p, p0, p1. rewrite nl. rewrite nl. reflexivity.
+ assumption.
+ rewrite p, p0 in p1. rewrite nl in p1. rewrite comm in p1. rewrite nl in p1.
assumption.
+ rewrite p in p0. rewrite nl in p0.
apply (non_empty_union_l y z) in n. eq_neq_tac.
+ rewrite p, p0 in p1. rewrite nr in p1. rewrite nr in p1. assumption.
+ rewrite p in p0. rewrite nr in p0.
apply (non_empty_union_l x z) in n. eq_neq_tac.
+ rewrite p in p0. rewrite nr in p0.
apply (non_empty_union_l x y) in n. eq_neq_tac.
+ apply (non_empty_union_l x y) in n.
apply (non_empty_union_l (x y) z) in n. eq_neq_tac.
- intros. destruct px, py; apply path_sum; destruct_match_1.
+ rewrite p, p0; apply union_idem.
+ rewrite p in p0. rewrite nr in p0. assumption.
+ rewrite p in p0. rewrite nl in p0. assumption.
+ apply (non_empty_union_r y x) in n. eq_neq_tac.
- intros x px.
destruct px. apply path_sum; destruct_match_1.
+ assumption.
+ apply path_sum; destruct_match_1. assumption.
- intros x px.
destruct px. apply path_sum; destruct_match_1.
+ assumption.
+ apply path_sum; destruct_match_1. assumption.
- intros. cbn. apply path_sum. destruct_match_1.
+ apply (non_empty_singleton x). apply p.
Defined.
Lemma union_non_empty `{Funext}:
forall X1 X2: FSet A, U X1 X2 <> -> X1 <> \/ X2 <> .
intros X1 X2 G.
specialize (fset_eset_dec X1).
intro. destruct X. rewrite p in G. rewrite nl in G.
right. assumption. left. apply n.
Defined.
Lemma union_non_empty' `{Funext}:
forall X1 X2: FSet A, U X1 X2 <> ->
(X1 <> /\ X2 = ) \/
(X1 = /\ X2 <> ) \/
(X1 <> /\ X2 <> ).
intros X1 X2 G.
specialize (fset_eset_dec X1).
specialize (fset_eset_dec X2).
intros H1 H2.
destruct H1, H2.
- rewrite p, p0 in G. destruct G. apply union_idem.
- left; split; assumption.
- right. left. split; assumption.
- right. right. split; assumption.
Defined.
End EmptySetProperties.

574
FiniteSets/ordered.v Normal file
View File

@ -0,0 +1,574 @@
Require Import HoTT.
Require Import HitTactics.
Require Import definition.
Require Import operations.
Require Import properties.
Require Import empty_set.
Class Antisymmetric {A} (R : relation A) :=
antisymmetry : forall x y, R x y -> R y x -> x = y.
Class Total {A} (R : relation A) :=
total : forall x y, x = y \/ R x y \/ R y x.
Class TotalOrder {A} (R : relation A) :=
{ TotalOrder_Reflexive : Reflexive R | 2 ;
TotalOrder_Antisymmetric : Antisymmetric R | 2;
TotalOrder_Transitive : Transitive R | 2;
TotalOrder_Total : Total R | 2; }.
Context {A : Type0}.
Context {A_deceq : DecidablePaths A}.
Context {R: relation A}.
Context {A_ordered : TotalOrder R}.
Ltac eq_neq_tac :=
match goal with
| [ H: ?x <> E, H': ?x = E |- _ ] => destruct H; assumption
end.
Ltac destruct_match_1 :=
repeat match goal with
| [|- match ?X with | _ => _ end ] => destruct X
| [|- ?X = ?Y ] => apply path_ishprop
| [ H: ?x <> E |- Empty ] => destruct H
| [ H1: ?x = E, H2: ?y = E, H3: ?w ?q = E |- ?r = E]
=> rewrite H1, H2 in H3; rewrite nl in H3; rewrite nl in H3
end.
Lemma transport_dom_eq (D1 D2 C: Type) (P: D1 = D2) (f: D1 -> C) :
transport (fun T: Type => T -> C) P f = fun y => f (transport (fun X => X) P^ y).
Proof.
induction P.
hott_simpl.
Defined.
Lemma transport_dom_eq_gen (Ty: Type) (D1 D2: Ty) (C: Type) (P: D1 = D2)
(Q : Ty -> Type) (f: Q D1 -> C) :
transport (fun X: Ty => Q X -> C) P f = fun y => f (transport Q P^ y).
Proof.
induction P.
hott_simpl.
Defined.
Lemma min {HFun: Funext} (x: FSet A): x <> -> A.
Proof.
hrecursion x.
- intro H. destruct H. reflexivity.
- intros. exact a.
- intros x y rx ry H.
apply union_non_empty' in H.
destruct H.
+ destruct p. specialize (rx fst). exact rx.
+ destruct s.
* destruct p. specialize (ry snd). exact ry.
* destruct p. specialize (rx fst). specialize (ry snd).
destruct (TotalOrder_Total rx ry) as [Heq | [ Hx | Hy ]].
** exact rx.
** exact rx.
** exact ry.
- intros. rewrite transport_dom_eq_gen.
apply path_forall. intro y0.
destruct ( union_non_empty' x y z
(transport (fun X : FSet A => X <> ) (assoc x y z)^ y0))
as [[ G1 G2] | [[ G3 G4] | [G5 G6]]].
+ pose (G2' := G2). apply eset_union_lr in G2'; destruct G2'. cbn.
destruct (union_non_empty' x y z y0) as
[[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac.
destruct (union_non_empty' x y H'x).
** destruct p. assert (G1 = fst0). apply path_forall. intro.
apply path_ishprop. rewrite X. reflexivity.
** destruct s; destruct p; eq_neq_tac.
+ destruct (union_non_empty' y z G4) as
[[H'x H'y] | [ [H'a H'b] | [H'c H'd]]]; try eq_neq_tac.
destruct (union_non_empty' x y z y0).
** destruct p. cbn. destruct (union_non_empty' x y fst).
*** destruct p; eq_neq_tac.
*** destruct s. destruct p.
**** assert (H'x = snd0). apply path_forall. intro.
apply path_ishprop. rewrite X. reflexivity.
**** destruct p. eq_neq_tac.
** destruct s; destruct p; try eq_neq_tac.
** destruct (union_non_empty' x y z y0).
*** destruct p. eq_neq_tac.
*** destruct s. destruct p.
**** assert (H'b = snd). apply path_forall. intro.
apply path_ishprop. rewrite X. reflexivity.
**** destruct p. assert (x y = E).
rewrite H'a, G3. apply union_idem. eq_neq_tac.
** cbn. destruct (TotalOrder_Total (py H'c) (pz H'd)).
*** destruct (union_non_empty' x y z y0).
**** destruct p0. eq_neq_tac.
**** destruct s.
***** destruct p0. rewrite G3, nl in fst. eq_neq_tac.
***** destruct p0. destruct (union_non_empty' x y fst).
****** destruct p0. eq_neq_tac.
****** destruct s.
******* destruct p0.
destruct (TotalOrder_Total (py snd0) (pz snd)).
f_ap. apply path_forall. intro.
apply path_ishprop.
destruct s. f_ap. apply path_forall. intro.
apply path_ishprop.
rewrite p. f_ap. apply path_forall. intro.
apply path_ishprop.
******* destruct p0. eq_neq_tac.
*** destruct (union_non_empty' x y z y0).
**** destruct p. eq_neq_tac.
**** destruct s0. destruct p. rewrite comm in fst.
apply eset_union_l in fst. eq_neq_tac.
destruct p.
destruct (union_non_empty' x y fst).
***** destruct p; eq_neq_tac.
***** destruct s0. destruct p.
destruct (TotalOrder_Total (py snd0) (pz snd));
destruct s; try (f_ap; apply path_forall; intro;
apply path_ishprop).
rewrite p. f_ap; apply path_forall; intro;
apply path_ishprop.
destruct s0. f_ap; apply path_forall; intro;
apply path_ishprop.
assert (snd0 = H'c). apply path_forall; intro;
apply path_ishprop.
assert (snd = H'd). apply path_forall; intro;
apply path_ishprop.
rewrite <- X0 in r. rewrite X in r0.
apply TotalOrder_Antisymmetric; assumption.
destruct s0.
assert (snd0 = H'c). apply path_forall; intro;
apply path_ishprop.
assert (snd = H'd). apply path_forall; intro;
apply path_ishprop.
rewrite <- X in r. rewrite X0 in r0.
apply TotalOrder_Antisymmetric; assumption.
f_ap; apply path_forall; intro;
apply path_ishprop.
destruct p; eq_neq_tac.
+ cbn. destruct (union_non_empty' y z G6).
** destruct p. destruct ( union_non_empty' x y z y0).
*** destruct p. destruct (union_non_empty' x y fst0).
**** destruct p; eq_neq_tac.
**** destruct s; destruct p. eq_neq_tac.
assert (fst1 = G5). apply path_forall; intro;
apply path_ishprop.
assert (fst = snd1). apply path_forall; intro;
apply path_ishprop.
rewrite X, X0.
destruct (TotalOrder_Total (px G5) (py snd1)).
reflexivity.
destruct s; reflexivity.
*** destruct s; destruct p; eq_neq_tac.
** destruct (union_non_empty' x y z y0).
*** destruct p. destruct s; destruct p; eq_neq_tac.
*** destruct s. destruct p. destruct s0. destruct p.
apply eset_union_l in fst0. eq_neq_tac.
**** destruct p.
assert (snd = snd0). apply path_forall; intro;
apply path_ishprop.
destruct (union_non_empty' x y fst0).
destruct p.
assert (fst1 = G5). apply path_forall; intro;
apply path_ishprop.
assert (fst = snd1). apply set_path2.
***** rewrite X0. rewrite <- X. reflexivity.
***** destruct s; destruct p; eq_neq_tac.
**** destruct s0. destruct p0. destruct p.
***** apply eset_union_l in fst. eq_neq_tac.
***** destruct p, p0.
assert (snd0 = snd). apply path_forall; intro;
apply path_ishprop.
rewrite X.
destruct (union_non_empty' x y fst0).
destruct p; eq_neq_tac.
destruct s. destruct p; eq_neq_tac.
destruct p.
assert (fst = snd1). apply path_forall; intro;
apply path_ishprop.
assert (fst1 = G5). apply path_forall; intro;
apply path_ishprop.
rewrite <- X0. rewrite X1.
destruct (TotalOrder_Total (py fst) (pz snd)).
****** rewrite <- p.
destruct (TotalOrder_Total (px G5) (py fst)).
rewrite <- p0.
destruct (TotalOrder_Total (px G5) (px G5)).
reflexivity.
destruct s; reflexivity.
destruct s. destruct (TotalOrder_Total (px G5) (py fst)).
reflexivity.
destruct s.
reflexivity.
apply TotalOrder_Antisymmetric; assumption.
destruct (TotalOrder_Total (py fst) (py fst)).
reflexivity.
destruct s;
reflexivity.
****** destruct s.
destruct (TotalOrder_Total (px G5) (py fst)).
destruct (TotalOrder_Total (px G5) (pz snd)).
reflexivity.
destruct s.
reflexivity. rewrite <- p in r.
apply TotalOrder_Antisymmetric; assumption.
destruct s.
destruct ( TotalOrder_Total (px G5) (pz snd)).
reflexivity.
destruct s. reflexivity.
apply (TotalOrder_Transitive (px G5)) in r.
apply TotalOrder_Antisymmetric; assumption.
assumption.
destruct (TotalOrder_Total (py fst) (pz snd)). reflexivity.
destruct s. reflexivity.
apply TotalOrder_Antisymmetric; assumption.
*******
destruct ( TotalOrder_Total (px G5) (py fst)).
reflexivity.
destruct s. destruct (TotalOrder_Total (px G5) (pz snd)).
reflexivity. destruct s; reflexivity.
destruct ( TotalOrder_Total (px G5) (pz snd)).
rewrite <- p.
destruct (TotalOrder_Total (py fst) (px G5)).
apply symmetry; assumption.
destruct s. rewrite <- p in r.
apply TotalOrder_Antisymmetric; assumption.
reflexivity. destruct s.
assert ((py fst) = (pz snd)). apply TotalOrder_Antisymmetric.
apply (TotalOrder_Transitive (py fst) (px G5)); assumption.
assumption. rewrite X2. assert (px G5 = pz snd).
apply TotalOrder_Antisymmetric. assumption.
apply (TotalOrder_Transitive (pz snd) (py fst)); assumption.
rewrite X3.
destruct ( TotalOrder_Total (pz snd) (pz snd)).
reflexivity. destruct s; reflexivity.
destruct (TotalOrder_Total (py fst) (pz snd)).
apply TotalOrder_Antisymmetric. assumption. rewrite p.
apply (TotalOrder_Reflexive). destruct s.
apply TotalOrder_Antisymmetric; assumption. reflexivity.
- intros. rewrite transport_dom_eq_gen.
apply path_forall. intro y0. cbn.
destruct
(union_non_empty' x y
(transport (fun X : FSet A => X <> ) (comm x y)^ y0)) as
[[Hx Hy] | [ [Ha Hb] | [Hc Hd]]];
destruct (union_non_empty' y x y0) as
[[H'x H'y] | [ [H'a H'b] | [H'c H'd]]];
try (eq_neq_tac).
assert (Hx = H'b). apply path_forall. intro.
apply path_ishprop. rewrite X. reflexivity.
assert (Hb = H'x). apply path_forall. intro.
apply path_ishprop. rewrite X. reflexivity.
assert (Hd = H'c). apply path_forall. intro.
apply path_ishprop. rewrite X.
assert (H'd = Hc). apply path_forall. intro.
apply path_ishprop.
rewrite X0. rewrite <- X.
destruct
(TotalOrder_Total (px Hc) (py Hd)) as [G1 | [G2 | G3]];
destruct
(TotalOrder_Total (py Hd) (px Hc)) as [T1 | [T2 | T3]];
try (assumption);
try (reflexivity);
try (apply symmetry; assumption);
try (apply TotalOrder_Antisymmetric; assumption).
- intros. rewrite transport_dom_eq_gen.
apply path_forall. intro y.
destruct (union_non_empty' x (transport (fun X : FSet A => X <> ) (nl x)^ y)).
destruct p. eq_neq_tac.
destruct s.
destruct p.
assert (y = snd).
apply path_forall. intro.
apply path_ishprop. rewrite X. reflexivity.
destruct p. destruct fst.
- intros. rewrite transport_dom_eq_gen.
apply path_forall. intro y.
destruct (union_non_empty' x (transport (fun X : FSet A => X <> ) (nr x)^ y)).
destruct p. assert (y = fst). apply path_forall. intro.
apply path_ishprop. rewrite X. reflexivity.
destruct s.
destruct p.
eq_neq_tac.
destruct p.
destruct snd.
- intros. rewrite transport_dom_eq_gen.
apply path_forall. intro y.
destruct ( union_non_empty' {|x|} {|x|} (transport (fun X : FSet A => X <> ) (idem x)^ y)).
reflexivity.
destruct s.
reflexivity.
destruct p.
cbn. destruct (TotalOrder_Total x x). reflexivity.
destruct s; reflexivity.
Defined.
Definition minfset {HFun: Funext} :
FSet A -> { Y: (FSet A) & (Y = E) + { a: A & Y = L a } }.
intro X.
hinduction X.
- exists E. left. reflexivity.
- intro a. exists (L a). right. exists a. reflexivity.
- intros IH1 IH2.
destruct IH1 as [R1 HR1].
destruct IH2 as [R2 HR2].
destruct HR1.
destruct HR2.
exists E; left. reflexivity.
destruct s as [a Ha]. exists (L a). right.
exists a. reflexivity.
destruct HR2.
destruct s as [a Ha].
exists (L a). right. exists a. reflexivity.
destruct s as [a1 Ha1].
destruct s0 as [a2 Ha2].
assert (a1 = a2 \/ R a1 a2 \/ R a2 a1).
apply TotalOrder_Total.
destruct X.
exists (L a1). right. exists a1. reflexivity.
destruct s.
exists (L a1). right. exists a1. reflexivity.
exists (L a2). right. exists a2. reflexivity.
- cbn. intros R1 R2 R3.
destruct R1 as [Res1 HR1].
destruct HR1 as [HR1E | HR1S].
destruct R2 as [Res2 HR2].
destruct HR2 as [HR2E | HR2S].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
+ cbn. reflexivity.
+ cbn. reflexivity.
+ cbn. destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
* cbn. reflexivity.
* destruct HR2S as [a2 Ha2].
destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a2 a3).
** cbn. reflexivity.
** destruct s. cbn. reflexivity.
cbn. reflexivity.
+ destruct HR1S as [a1 Ha1].
destruct R2 as [Res2 HR2].
destruct HR2 as [HR2E | HR2S].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
* cbn. reflexivity.
* destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s; reflexivity.
* destruct HR2S as [a2 Ha2].
destruct R3 as [Res3 HR3].
destruct HR3 as [HR3E | HR3S].
cbn. destruct (TotalOrder_Total a1 a2).
cbn. reflexivity.
destruct s.
cbn. reflexivity.
cbn. reflexivity.
destruct HR3S as [a3 Ha3].
destruct (TotalOrder_Total a2 a3).
** rewrite p.
destruct (TotalOrder_Total a1 a3).
rewrite p0.
destruct ( TotalOrder_Total a3 a3).
reflexivity.
destruct s; reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
cbn. destruct (TotalOrder_Total a3 a3).
reflexivity.
destruct s; reflexivity.
** destruct s.
*** cbn. destruct (TotalOrder_Total a1 a2).
cbn. destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
rewrite <- p in r.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
destruct s. reflexivity.
assert (R a1 a3).
apply (TotalOrder_Transitive a1 a2); assumption.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X0. reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
reflexivity.
destruct s.
reflexivity.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
*** cbn. destruct (TotalOrder_Total a1 a3).
rewrite p. destruct (TotalOrder_Total a3 a2).
cbn. destruct (TotalOrder_Total a3 a3).
reflexivity. destruct s; reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a3 a3).
reflexivity. destruct s; reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p0.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
destruct s.
cbn.
destruct (TotalOrder_Total a1 a2).
cbn.
destruct (TotalOrder_Total a1 a3).
reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric. assumption.
rewrite <- p in r. assumption.
destruct s. reflexivity. rewrite X. reflexivity.
destruct s. cbn.
destruct (TotalOrder_Total a1 a3). reflexivity.
destruct s. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p in r1.
assert (a2 = a1).
transitivity a3.
assumption.
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
destruct s.
assert (a1 = a2).
apply TotalOrder_Antisymmetric.
apply (TotalOrder_Transitive a1 a3); assumption.
assumption.
rewrite X. reflexivity.
assert (a1 = a3).
apply TotalOrder_Antisymmetric.
assumption.
apply (TotalOrder_Transitive a3 a2); assumption.
rewrite X. reflexivity.
destruct ( TotalOrder_Total a1 a2).
cbn.
destruct (TotalOrder_Total a1 a3).
rewrite p0.
reflexivity.
destruct s.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
destruct s.
cbn.
destruct (TotalOrder_Total a1 a3 ).
rewrite p.
reflexivity.
destruct s.
assert (a1 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
cbn.
destruct (TotalOrder_Total a1 a3 ).
assert (a2 = a3).
rewrite p in r1.
apply TotalOrder_Antisymmetric; assumption.
rewrite X. destruct (TotalOrder_Total a3 a3). reflexivity.
destruct s; reflexivity.
destruct s.
destruct (TotalOrder_Total a2 a3).
rewrite p.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity.
reflexivity.
cbn. destruct (TotalOrder_Total a2 a3).
rewrite p.
reflexivity.
destruct s.
assert (a2 = a3).
apply TotalOrder_Antisymmetric; assumption.
rewrite X. reflexivity. reflexivity.
- cbn. intros R1 R2.
destruct R1 as [La1 HR1].
destruct HR1 as [HR1E | HR1S].
destruct R2 as [La2 HR2].
destruct HR2 as [HR2E | HR2S].
reflexivity.
reflexivity.
destruct R2 as [La2 HR2].
destruct HR2 as [HR2E | HR2S].
reflexivity.
destruct HR1S as [a1 Ha1].
destruct HR2S as [a2 Ha2].
destruct (TotalOrder_Total a1 a2).
rewrite p.
destruct (TotalOrder_Total a2 a2).
reflexivity.
destruct s; reflexivity.
destruct s.
destruct (TotalOrder_Total a2 a1).
rewrite p.
reflexivity.
destruct s.
assert (a1 = a2).
apply TotalOrder_Antisymmetric; assumption.
rewrite X.
reflexivity.
reflexivity.
destruct (TotalOrder_Total a2 a1).
rewrite p.
reflexivity.
destruct s.
reflexivity.
assert (a1 = a2).
apply TotalOrder_Antisymmetric; assumption.
rewrite X.
reflexivity.
- cbn. intro R. destruct R as [La HR].
destruct HR. rewrite <- p. reflexivity.
destruct s as [a1 H].
apply (path_sigma' _ H^).
rewrite transport_sum.
f_ap.
rewrite transport_sigma.
simpl.
simple refine (path_sigma' _ _ _ ).
apply transport_const.
apply set_path2.
- intros R. cbn.
destruct R as [ R HR].
destruct HR as [HE | Ha ].
rewrite <- HE. reflexivity.
destruct Ha as [a Ha].
apply (path_sigma' _ Ha^).
rewrite transport_sum.
f_ap.
rewrite transport_sigma.
simpl.
simple refine (path_sigma' _ _ _ ).
apply transport_const.
apply set_path2.
- cbn. intro.
destruct (TotalOrder_Total x x).
reflexivity.
destruct s.
reflexivity.
reflexivity.
Defined.

View File

@ -1,5 +1,5 @@
Require Import HoTT HitTactics.
Require Import definition operations.
Require Export definition operations.
Section properties.
@ -20,8 +20,7 @@ try (intros ; apply set_path2) ; cbn.
rewrite P.
rewrite (comm y x).
rewrite <- (assoc x y y).
rewrite Q.
reflexivity.
f_ap.
Defined.
@ -177,22 +176,24 @@ Defined.
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
Proof.
hinduction; try (intros; apply set_path2).
hinduction; try (intros ; apply set_path2).
- reflexivity.
- intro a.
destruct (dec (a = a)).
* reflexivity.
* contradiction (n idpath).
- intros X Y IHX IHY.
f_ap;
unfold intersection in *.
rewrite comprehension_or.
rewrite comprehension_or.
+ transitivity (U (comprehension (fun a => isIn a X) X) (comprehension (fun a => isIn a Y) X)).
apply comprehension_or.
rewrite IHX.
rewrite IHY.
rewrite comprehension_subset.
rewrite (comm X).
rewrite comprehension_subset.
reflexivity.
apply comprehension_subset.
+ transitivity (U (comprehension (fun a => isIn a X) Y) (comprehension (fun a => isIn a Y) Y)).
apply comprehension_or.
rewrite IHY.
apply comprehension_subset.
Defined.
(** assorted lattice laws *)
@ -270,8 +271,6 @@ hinduction x; try (intros ; apply set_path2) ; cbn.
reflexivity.
Defined.
Theorem intersection_assoc (X Y Z: FSet A) :
intersection X (intersection Y Z) = intersection (intersection X Y) Z.
Proof.
@ -314,14 +313,12 @@ hinduction; try (intros ; apply set_path2).
* reflexivity.
* contradiction (n idpath).
- intros X1 X2 P Q.
rewrite comprehension_or.
rewrite comprehension_or.
rewrite P.
f_ap; (etransitivity; [ apply comprehension_or |]).
rewrite P. rewrite (comm X1).
apply comprehension_subset.
rewrite Q.
rewrite comprehension_subset.
rewrite (comm X1).
rewrite comprehension_subset.
reflexivity.
apply comprehension_subset.
Defined.
@ -338,13 +335,16 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
rewrite p.
rewrite comprehension_subset.
reflexivity.
- intros. unfold intersection. (* TODO isIn is simplified too much *)
rewrite comprehension_or.
rewrite comprehension_or.
(* rewrite intersection_La. *)
- intros.
assert (Y = intersection (U (L a) Y) Y) as HY.
{ unfold intersection. symmetry.
transitivity (U (comprehension (fun x => isIn x (L a)) Y) (comprehension (fun x => isIn x Y) Y)).
apply comprehension_or.
rewrite comprehension_all.
apply comprehension_subset. }
rewrite <- HY.
admit.
- unfold intersection.
cbn.
intros Z1 Z2 P Q.
rewrite comprehension_or.
assert (U (U (comprehension (fun a : A => isIn a Z1) X2)
@ -358,12 +358,13 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
rewrite <- assoc.
rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
rewrite Q.
cbn.
rewrite
(comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
(comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
rewrite assoc.
rewrite P.
rewrite <- assoc.
rewrite <- assoc. cbn.
rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
rewrite <- assoc.
@ -436,17 +437,20 @@ hrecursion X; try (intros ; apply set_path2).
rewrite <- Q.
Admitted.
Theorem union_isIn (X Y : FSet A) (a : A) : isIn a (U X Y) = orb (isIn a X) (isIn a Y).
Proof.
reflexivity.
Defined.
(* Properties about subset relation. *)
Lemma subsect_intersection `{Funext} (X Y : FSet A) :
X Y = true -> U X Y = Y.
Lemma subset_union `{Funext} (X Y : FSet A) :
subset X Y = true -> U X Y = Y.
Proof.
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
- intros. apply nl.
- intros a. hinduction Y;
try (intros; apply path_forall; intro; apply set_path2).
(*intros. apply equiv_hprop_allpath.*)
+ intro. cbn. contradiction (false_ne_true).
+ intro. contradiction (false_ne_true).
+ intros. destruct (dec (a = a0)).
rewrite p; apply idem.
contradiction (false_ne_true).
@ -454,31 +458,183 @@ hinduction X; try (intros; apply path_forall; intro; apply set_path2).
intro Ho.
destruct (isIn a X1);
destruct (isIn a X2).
specialize (IH1 idpath).
specialize (IH2 idpath).
rewrite assoc. rewrite IH1. reflexivity.
specialize (IH1 idpath).
rewrite assoc. rewrite IH1. reflexivity.
specialize (IH2 idpath).
rewrite assoc. rewrite (comm (L a)). rewrite <- assoc. rewrite IH2.
reflexivity.
cbn in Ho. contradiction (false_ne_true).
* specialize (IH1 idpath).
rewrite assoc. f_ap.
* specialize (IH1 idpath).
rewrite assoc. f_ap.
* specialize (IH2 idpath).
rewrite (comm X1 X2).
rewrite assoc. f_ap.
* contradiction (false_ne_true).
- intros X1 X2 IH1 IH2 G.
destruct (subset X1 Y);
destruct (subset X2 Y).
specialize (IH1 idpath).
* specialize (IH1 idpath).
specialize (IH2 idpath).
rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
specialize (IH1 idpath).
apply IH2 in G.
rewrite <- assoc. rewrite G. rewrite IH1. reflexivity.
specialize (IH2 idpath).
apply IH1 in G.
rewrite <- assoc. rewrite IH2. rewrite G. reflexivity.
specialize (IH1 G). specialize (IH2 G).
rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
rewrite <- assoc. rewrite IH2. apply IH1.
* contradiction (false_ne_true).
* contradiction (false_ne_true).
* contradiction (false_ne_true).
Defined.
Theorem
Lemma eq1 (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
Proof.
unshelve eapply BuildEquiv.
{ intro H. rewrite H. split; apply union_idem. }
unshelve esplit.
{ intros [H1 H2]. etransitivity. apply H1^.
rewrite comm. apply H2. }
intro; apply path_prod; apply set_path2.
all: intro; apply set_path2.
Defined.
Lemma subset_union_l `{Funext} X :
forall Y, subset X (U X Y) = true.
hinduction X;
try (intros; apply path_forall; intro; apply set_path2).
- reflexivity.
- intros a Y. destruct (dec (a = a)).
* reflexivity.
* by contradiction n.
- intros X1 X2 HX1 HX2 Y.
enough (subset X1 (U (U X1 X2) Y) = true).
enough (subset X2 (U (U X1 X2) Y) = true).
rewrite X. rewrite X0. reflexivity.
{ rewrite (comm X1 X2).
rewrite <- (assoc X2 X1 Y).
apply (HX2 (U X1 Y)). }
{ rewrite <- (assoc X1 X2 Y). apply (HX1 (U X2 Y)). }
Defined.
Lemma subset_union_equiv `{Funext}
: forall X Y : FSet A, subset X Y = true <~> U X Y = Y.
Proof.
intros X Y.
unshelve eapply BuildEquiv.
apply subset_union.
unshelve esplit.
{ intros HXY. rewrite <- HXY. clear HXY.
apply subset_union_l. }
all: intro; apply set_path2.
Defined.
Lemma eq_subset `{Funext} (X Y : FSet A) :
X = Y <~> ((subset Y X = true) * (subset X Y = true)).
Proof.
transitivity ((U Y X = X) * (U X Y = Y)).
apply eq1.
symmetry.
eapply equiv_functor_prod'; apply subset_union_equiv.
Defined.
Lemma subset_isIn `{FE : Funext} (X Y : FSet A) :
(forall (a : A), isIn a X = true -> isIn a Y = true)
<-> (subset X Y = true).
Proof.
split.
- hinduction X ; try (intros ; apply path_forall ; intro ; apply set_path2).
* intros ; reflexivity.
* intros a H.
apply H.
destruct (dec (a = a)).
+ reflexivity.
+ contradiction (n idpath).
* intros X1 X2 H1 H2 H.
enough (subset X1 Y = true).
rewrite X.
enough (subset X2 Y = true).
rewrite X0.
reflexivity.
+ apply H2.
intros a Ha.
apply H.
rewrite Ha.
destruct (isIn a X1) ; reflexivity.
+ apply H1.
intros a Ha.
apply H.
rewrite Ha.
reflexivity.
- hinduction X .
* intros. contradiction (false_ne_true X0).
* intros b H a.
destruct (dec (a = b)).
+ intros ; rewrite p ; apply H.
+ intros X ; contradiction (false_ne_true X).
* intros X1 X2.
intros IH1 IH2 H1 a H2.
destruct (subset X1 Y) ; destruct (subset X2 Y);
cbv in H1; try by contradiction false_ne_true.
specialize (IH1 idpath a). specialize (IH2 idpath a).
destruct (isIn a X1); destruct (isIn a X2);
cbv in H2; try by contradiction false_ne_true.
by apply IH1.
by apply IH1.
by apply IH2.
* repeat (intro; intros; apply path_forall).
intros; intro; intros; apply set_path2.
* repeat (intro; intros; apply path_forall).
intros; intro; intros; apply set_path2.
* repeat (intro; intros; apply path_forall).
intros; intro; intros; apply set_path2.
* repeat (intro; intros; apply path_forall).
intros; intro; intros; apply set_path2.
* repeat (intro; intros; apply path_forall);
intros; intro; intros; apply set_path2.
Defined.
Lemma HPropEquiv (X Y : Type) (P : IsHProp X) (Q : IsHProp Y) :
(X <-> Y) -> (X <~> Y).
Proof.
intros [f g].
simple refine (BuildEquiv _ _ _ _).
apply f.
simple refine (BuildIsEquiv _ _ _ _ _ _ _).
- apply g.
- unfold Sect.
intro x.
apply Q.
- unfold Sect.
intro x.
apply P.
- intros.
apply set_path2.
Defined.
Theorem fset_ext `{Funext} (X Y : FSet A) :
X = Y <~> (forall (a : A), isIn a X = isIn a Y).
Proof.
etransitivity. apply eq_subset.
transitivity
((forall a, isIn a Y = true -> isIn a X = true)
*(forall a, isIn a X = true -> isIn a Y = true)).
- eapply equiv_functor_prod'.
apply HPropEquiv.
exact _.
exact _.
split ; apply subset_isIn.
apply HPropEquiv.
exact _.
exact _.
split ; apply subset_isIn.
- apply HPropEquiv.
exact _.
exact _.
split.
* intros [H1 H2 a].
specialize (H1 a) ; specialize (H2 a).
destruct (isIn a X).
+ symmetry ; apply (H2 idpath).
+ destruct (isIn a Y).
{ apply (H1 idpath). }
{ reflexivity. }
* intros H1.
split ; intro a ; intro H2.
+ rewrite (H1 a).
apply H2.
+ rewrite <- (H1 a).
apply H2.
Defined.
End properties.