mirror of
https://github.com/nmvdw/HITs-Examples
synced 2025-12-16 23:23:50 +01:00
Clean up trailing whitespaces and an unused definition.
This commit is contained in:
@@ -10,7 +10,7 @@ Section characterize_isIn.
|
||||
|
||||
(** isIn properties *)
|
||||
Definition empty_isIn (a: A) : a ∈ ∅ -> Empty := idmap.
|
||||
|
||||
|
||||
Definition singleton_isIn (a b: A) : a ∈ {|b|} -> Trunc (-1) (a = b) := idmap.
|
||||
|
||||
Definition union_isIn (X Y : FSet A) (a : A)
|
||||
@@ -20,7 +20,7 @@ Section characterize_isIn.
|
||||
{|X ∪ Y & ϕ|} = {|X & ϕ|} ∪ {|Y & ϕ|}.
|
||||
Proof.
|
||||
reflexivity.
|
||||
Defined.
|
||||
Defined.
|
||||
|
||||
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
|
||||
a ∈ {|X & ϕ|} = if ϕ a then a ∈ X else False_hp.
|
||||
@@ -37,7 +37,7 @@ Section characterize_isIn.
|
||||
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
|
||||
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
|
||||
; apply (false_ne_true).
|
||||
* apply (Hd^ @ ap ϕ X^ @ Hc).
|
||||
* apply (Hd^ @ ap ϕ X^ @ Hc).
|
||||
* apply (Hc^ @ ap ϕ X @ Hd).
|
||||
}
|
||||
apply (X (ϕ a) (ϕ b) idpath idpath).
|
||||
@@ -57,7 +57,7 @@ End characterize_isIn.
|
||||
Section product_isIn.
|
||||
Context {A B : Type}.
|
||||
Context `{Univalence}.
|
||||
|
||||
|
||||
Lemma isIn_singleproduct (a : A) (b : B) (c : A) : forall (Y : FSet B),
|
||||
(a, b) ∈ (single_product c Y) = land (BuildhProp (Trunc (-1) (a = c))) (b ∈ Y).
|
||||
Proof.
|
||||
@@ -65,7 +65,7 @@ Section product_isIn.
|
||||
- apply path_hprop ; symmetry ; apply prod_empty_r.
|
||||
- intros d.
|
||||
apply path_iff_hprop.
|
||||
* intros.
|
||||
* intros.
|
||||
strip_truncations.
|
||||
split ; apply tr ; try (apply (ap fst X)) ; try (apply (ap snd X)).
|
||||
* intros [Z1 Z2].
|
||||
@@ -93,7 +93,7 @@ Section product_isIn.
|
||||
** right.
|
||||
split ; try (apply (tr H1)) ; try (apply Hb2).
|
||||
Defined.
|
||||
|
||||
|
||||
Definition isIn_product (a : A) (b : B) (X : FSet A) (Y : FSet B) :
|
||||
(a,b) ∈ (product X Y) = land (a ∈ X) (b ∈ Y).
|
||||
Proof.
|
||||
@@ -147,7 +147,7 @@ Section properties.
|
||||
Global Instance joinsemilattice_fset : JoinSemiLattice (FSet A).
|
||||
Proof.
|
||||
split ; toHProp.
|
||||
Defined.
|
||||
Defined.
|
||||
|
||||
(** comprehension properties *)
|
||||
Lemma comprehension_false : forall (X : FSet A), {|X & fun _ => false|} = ∅.
|
||||
@@ -176,7 +176,7 @@ Section properties.
|
||||
Proof.
|
||||
toHProp.
|
||||
Defined.
|
||||
|
||||
|
||||
Lemma merely_choice : forall X : FSet A, hor (X = ∅) (hexists (fun a => a ∈ X)).
|
||||
Proof.
|
||||
hinduction; try (intros; apply equiv_hprop_allpath ; apply _).
|
||||
@@ -295,5 +295,5 @@ Section properties.
|
||||
repeat f_ap.
|
||||
apply path_ishprop.
|
||||
Defined.
|
||||
|
||||
|
||||
End properties.
|
||||
|
||||
Reference in New Issue
Block a user