1
0
mirror of https://github.com/nmvdw/HITs-Examples synced 2025-12-16 23:23:50 +01:00

Clean up trailing whitespaces and an unused definition.

This commit is contained in:
2017-08-09 18:05:58 +02:00
parent 31e08af1d1
commit 33808928db
15 changed files with 137 additions and 152 deletions

View File

@@ -10,7 +10,7 @@ Section characterize_isIn.
(** isIn properties *)
Definition empty_isIn (a: A) : a -> Empty := idmap.
Definition singleton_isIn (a b: A) : a {|b|} -> Trunc (-1) (a = b) := idmap.
Definition union_isIn (X Y : FSet A) (a : A)
@@ -20,7 +20,7 @@ Section characterize_isIn.
{|X Y & ϕ|} = {|X & ϕ|} {|Y & ϕ|}.
Proof.
reflexivity.
Defined.
Defined.
Lemma comprehension_isIn (ϕ : A -> Bool) (a : A) : forall X : FSet A,
a {|X & ϕ|} = if ϕ a then a X else False_hp.
@@ -37,7 +37,7 @@ Section characterize_isIn.
destruct c ; destruct d ; rewrite Hc, Hd ; try reflexivity
; apply path_iff_hprop ; try contradiction ; intros ; strip_truncations
; apply (false_ne_true).
* apply (Hd^ @ ap ϕ X^ @ Hc).
* apply (Hd^ @ ap ϕ X^ @ Hc).
* apply (Hc^ @ ap ϕ X @ Hd).
}
apply (X (ϕ a) (ϕ b) idpath idpath).
@@ -57,7 +57,7 @@ End characterize_isIn.
Section product_isIn.
Context {A B : Type}.
Context `{Univalence}.
Lemma isIn_singleproduct (a : A) (b : B) (c : A) : forall (Y : FSet B),
(a, b) (single_product c Y) = land (BuildhProp (Trunc (-1) (a = c))) (b Y).
Proof.
@@ -65,7 +65,7 @@ Section product_isIn.
- apply path_hprop ; symmetry ; apply prod_empty_r.
- intros d.
apply path_iff_hprop.
* intros.
* intros.
strip_truncations.
split ; apply tr ; try (apply (ap fst X)) ; try (apply (ap snd X)).
* intros [Z1 Z2].
@@ -93,7 +93,7 @@ Section product_isIn.
** right.
split ; try (apply (tr H1)) ; try (apply Hb2).
Defined.
Definition isIn_product (a : A) (b : B) (X : FSet A) (Y : FSet B) :
(a,b) (product X Y) = land (a X) (b Y).
Proof.
@@ -147,7 +147,7 @@ Section properties.
Global Instance joinsemilattice_fset : JoinSemiLattice (FSet A).
Proof.
split ; toHProp.
Defined.
Defined.
(** comprehension properties *)
Lemma comprehension_false : forall (X : FSet A), {|X & fun _ => false|} = .
@@ -176,7 +176,7 @@ Section properties.
Proof.
toHProp.
Defined.
Lemma merely_choice : forall X : FSet A, hor (X = ) (hexists (fun a => a X)).
Proof.
hinduction; try (intros; apply equiv_hprop_allpath ; apply _).
@@ -295,5 +295,5 @@ Section properties.
repeat f_ap.
apply path_ishprop.
Defined.
End properties.