mirror of https://github.com/nmvdw/HITs-Examples
Further cleaning
This commit is contained in:
parent
dfd590724b
commit
4ab70ae1fe
|
@ -1,5 +1,5 @@
|
||||||
Require Import HoTT.
|
Require Import HoTT.
|
||||||
Require Import disjunction lattice notation.
|
Require Import disjunction lattice notation plumbing.
|
||||||
|
|
||||||
Section subobjects.
|
Section subobjects.
|
||||||
Variable A : Type.
|
Variable A : Type.
|
||||||
|
@ -57,17 +57,7 @@ End isIn.
|
||||||
Section intersect.
|
Section intersect.
|
||||||
Variable A : Type.
|
Variable A : Type.
|
||||||
Variable C : (Sub A) -> hProp.
|
Variable C : (Sub A) -> hProp.
|
||||||
Context `{Univalence}.
|
Context `{Univalence}
|
||||||
|
|
||||||
Global Instance hprop_lem : forall (T : Type) (Ttrunc : IsHProp T), IsHProp (T + ~T).
|
|
||||||
Proof.
|
|
||||||
intros.
|
|
||||||
apply (equiv_hprop_allpath _)^-1.
|
|
||||||
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
|
|
||||||
- apply equiv_hprop_allpath. apply _.
|
|
||||||
Defined.
|
|
||||||
|
|
||||||
Context
|
|
||||||
{HI : closedIntersection C} {HE : closedEmpty C}
|
{HI : closedIntersection C} {HE : closedEmpty C}
|
||||||
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
|
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
|
||||||
|
|
||||||
|
|
|
@ -14,3 +14,10 @@ Defined.
|
||||||
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
|
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
|
||||||
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
|
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
|
||||||
Proof. destruct p. hott_simpl. Defined.
|
Proof. destruct p. hott_simpl. Defined.
|
||||||
|
|
||||||
|
Global Instance hprop_lem `{Univalence} (T : Type) (Ttrunc : IsHProp T) : IsHProp (T + ~T).
|
||||||
|
Proof.
|
||||||
|
apply (equiv_hprop_allpath _)^-1.
|
||||||
|
intros [x | nx] [y | ny] ; try f_ap ; try (apply Ttrunc) ; try contradiction.
|
||||||
|
- apply equiv_hprop_allpath. apply _.
|
||||||
|
Defined.
|
||||||
|
|
|
@ -15,11 +15,6 @@ Section TR.
|
||||||
| inr tt, inr tt => Unit_hp
|
| inr tt, inr tt => Unit_hp
|
||||||
end.
|
end.
|
||||||
|
|
||||||
Global Instance R_mere : is_mere_relation _ R.
|
|
||||||
Proof.
|
|
||||||
intros x y ; destruct x ; destruct y ; apply _.
|
|
||||||
Defined.
|
|
||||||
|
|
||||||
Global Instance R_refl : Reflexive R.
|
Global Instance R_refl : Reflexive R.
|
||||||
Proof.
|
Proof.
|
||||||
intro x ; destruct x as [[ ] | [ ]] ; apply tt.
|
intro x ; destruct x as [[ ] | [ ]] ; apply tt.
|
||||||
|
|
Loading…
Reference in New Issue