Added proof that the finite sets in HoTTlibrary have no intersection and union

This commit is contained in:
Niels 2017-08-09 12:07:43 +02:00
parent c358ef1659
commit 5233fc6de9
1 changed files with 142 additions and 2 deletions

View File

@ -24,9 +24,8 @@ Section sub_classes.
Variable C : (A -> hProp) -> hProp.
Context `{Univalence}.
Instance blah : Lattice (Sub A).
Instance subobject_lattice : Lattice (Sub A).
Proof.
unfold Sub.
apply _.
Defined.
@ -101,3 +100,144 @@ Section intersect.
apply (inl (tr (t2^ @ t1))).
Defined.
End intersect.
Section finite_hott.
Variable A : Type.
Context `{Univalence} `{IsHSet A}.
Definition finite (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}).
Definition singleton : closedSingleton finite.
Proof.
intros a.
simple refine (Build_Finite _ _ _).
- apply 1.
- apply tr.
simple refine (BuildEquiv _ _ _ _).
* apply (fun _ => inr tt).
* simple refine (BuildIsEquiv _ _ _ _ _ _ _) ; unfold Sect in *.
** apply (fun _ => (a;tr idpath)).
** intros x ; destruct x as [ | x] ; try contradiction.
destruct x ; reflexivity.
** intros [b bp] ; simpl.
strip_truncations.
simple refine (path_sigma _ _ _ _ _).
*** apply bp^.
*** apply path_ishprop.
** intros.
apply path_ishprop.
Defined.
Definition empty_finite : closedEmpty finite.
Proof.
simple refine (Build_Finite _ _ _).
- apply 0.
- apply tr.
simple refine (BuildEquiv _ _ _ _).
intros [a p] ; apply p.
Defined.
Definition decidable_empty_finite : hasDecidableEmpty finite.
Proof.
intros X Y.
destruct Y as [n Xn].
strip_truncations.
simpl in Xn.
destruct Xn as [f [g fg gf adj]].
destruct n.
- refine (tr(inl _)).
unfold empty.
apply path_forall.
intro z.
apply path_iff_hprop.
* intros p.
contradiction (f(z;p)).
* contradiction.
- refine (tr(inr _)).
apply (tr(g(inr tt))).
Defined.
Lemma no_union
(f : forall (X Y : Sub A),
Finite {a : A & X a} -> Finite {a : A & Y a}
-> Finite ({a : A & (X Y) a}))
(a b : A)
:
hor (a = b) (a = b -> Empty).
Proof.
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
destruct f as [n pn].
strip_truncations.
destruct pn as [f [g fg gf adj]].
unfold Sect in *.
destruct n.
- cbn in *. contradiction f.
exists a.
apply (tr(inl(tr idpath))).
- destruct n ; cbn in *.
-- pose ((a;tr(inl(tr idpath)))
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
as s1.
pose ((b;tr(inr(tr idpath)))
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
as s2.
pose (f s1) as fs1.
pose (f s2) as fs2.
assert (fs1 = fs2) as fs_eq.
{ apply path_ishprop. }
pose (g fs1) as gfs1.
pose (g fs2) as gfs2.
refine (tr(inl _)).
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
unfold fs1, fs2 in fs_eq. rewrite fs_eq.
reflexivity.
-- refine (tr(inr _)).
intros p.
pose (inl(inr tt) : Fin n + Unit + Unit) as s1.
pose (inr tt : Fin n + Unit + Unit) as s2.
pose (g s1) as gs1.
pose (c := g s1).
assert (c = gs1) as ps1. reflexivity.
pose (g s2) as gs2.
pose (d := g s2).
assert (d = gs2) as ps2. reflexivity.
pose (f gs1) as gfs1.
pose (f gs2) as gfs2.
destruct c as [x px] ; destruct d as [y py].
simple refine (Trunc_ind _ _ px) ; intros p1.
simple refine (Trunc_ind _ _ py) ; intros p2.
simpl.
assert (x = y -> Empty) as X1.
{
enough (s1 = s2) as X.
{
intros.
unfold s1, s2 in X.
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
+ apply tt.
+ rewrite X ; apply tt.
}
transitivity gfs1.
{ unfold gfs1, s1. apply (fg s1)^. }
symmetry ; transitivity gfs2.
{ unfold gfs2, s2. apply (fg s2)^. }
unfold gfs2, gfs1.
rewrite <- ps1, <- ps2.
f_ap.
simple refine (path_sigma _ _ _ _ _).
* cbn.
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
** apply (p2 @ p1^).
** refine (p2 @ _^ @ p1^). auto.
** refine (p2 @ _ @ p1^). auto.
** apply (p2 @ p1^).
* apply path_ishprop.
}
apply X1.
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
** apply (p1 @ p2^).
** refine (p1 @ _ @ p2^). auto.
** refine (p1 @ _ @ p2^). symmetry. auto.
** apply (p1 @ p2^).
Defined.
End finite_hott.