Merge branch 'ezsplit'

This commit is contained in:
Dan Frumin 2017-08-24 16:45:37 +02:00
commit 5afb85b000
2 changed files with 295 additions and 395 deletions

View File

@ -5,30 +5,30 @@ Require Import fsets.properties.
Section finite_hott. Section finite_hott.
Variable (A : Type). Variable (A : Type).
Context `{Univalence} `{IsHSet A}. Context `{Univalence}.
(* A subobject is B-finite if its extension is B-finite as a type *) (* A subobject is B-finite if its extension is B-finite as a type *)
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}). Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}).
Global Instance singleton_contr a : Contr {b : A & b {|a|}}. Global Instance singleton_contr a `{IsHSet A} : Contr {b : A & b {|a|}}.
Proof. Proof.
exists (a; tr idpath). exists (a; tr idpath).
intros [b p]. intros [b p].
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p). simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
clear p; intro p. simpl. clear p; intro p. simpl.
apply path_sigma' with (p^). apply path_sigma_hprop; simpl.
apply path_ishprop. apply p^.
Defined. Defined.
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b {|a|}}. Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b {|a|}}.
Proof. Proof.
intros _. apply (center {b : A & b {|a|}}). intros _. apply (a; tr idpath).
Defined. Defined.
Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a). Global Instance singleton_fin_equiv a `{IsHSet A} : IsEquiv (singleton_fin_equiv' a).
Proof. apply _. Defined. Proof. apply _. Defined.
Definition singleton : closedSingleton Bfin. Definition singleton `{IsHSet A} : closedSingleton Bfin.
Proof. Proof.
intros a. intros a.
simple refine (Build_Finite _ 1 _). simple refine (Build_Finite _ 1 _).
@ -48,9 +48,8 @@ Section finite_hott.
Definition decidable_empty_finite : hasDecidableEmpty Bfin. Definition decidable_empty_finite : hasDecidableEmpty Bfin.
Proof. Proof.
intros X Y. intros X Y.
destruct Y as [n Xn]. destruct Y as [n f].
strip_truncations. strip_truncations.
destruct Xn as [f [g fg gf adj]].
destruct n. destruct n.
- refine (tr(inl _)). - refine (tr(inl _)).
apply path_forall. intro z. apply path_forall. intro z.
@ -59,10 +58,10 @@ Section finite_hott.
contradiction (f (z;p)). contradiction (f (z;p)).
* contradiction. * contradiction.
- refine (tr(inr _)). - refine (tr(inr _)).
apply (tr(g(inr tt))). apply (tr(f^-1(inr tt))).
Defined. Defined.
Lemma no_union Lemma no_union `{IsHSet A}
(f : forall (X Y : Sub A), (f : forall (X Y : Sub A),
Bfin X -> Bfin Y -> Bfin (X Y)) Bfin X -> Bfin Y -> Bfin (X Y))
(a b : A) : (a b : A) :
@ -133,11 +132,13 @@ Section finite_hott.
** refine (px @ _ @ py^). symmetry. auto. ** refine (px @ _ @ py^). symmetry. auto.
** apply (px @ py^). ** apply (px @ py^).
Defined. Defined.
End finite_hott.
Section empty. Section empty.
Variable (A : Type).
Variable (X : A -> hProp) Variable (X : A -> hProp)
(Xequiv : {a : A & a X} <~> Fin 0). (Xequiv : {a : A & a X} <~> Fin 0).
Context `{Univalence}.
Lemma X_empty : X = . Lemma X_empty : X = .
Proof. Proof.
apply path_forall. apply path_forall.
@ -147,107 +148,109 @@ Section finite_hott.
destruct Xequiv as [f fequiv]. destruct Xequiv as [f fequiv].
contradiction (f(z;x)). contradiction (f(z;x)).
Defined. Defined.
End empty.
End empty.
Section split. (* TODO: This should go into the HoTT library or in some other places *)
Variable (X : A -> hProp) Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
ap inl (path_sum_inl B p) = p.
Proof.
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
[ | apply (eisretr_path_sum _) ].
destruct (path_sum_inl B p).
reflexivity.
Defined.
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
Proof. destruct p. hott_simpl. Defined.
(* END TODO *)
Section split.
Context `{Univalence}.
Variable (A : Type).
Variable (P : A -> hProp)
(n : nat) (n : nat)
(Xequiv : {a : A & a X} <~> Fin n + Unit). (f : {a : A & P a } <~> Fin n + Unit).
Definition split : {X' : A -> hProp & {a : A & a X'} <~> Fin n}. Definition split : exists P' : Sub A, exists b : A,
({a : A & P' a} <~> Fin n) * (forall x, P x = (P' x merely (x = b))).
Proof. Proof.
destruct Xequiv as [f [g fg gf adj]]. pose (fun x : A => sig (fun y : Fin n => x = (f^-1 (inl y)).1)) as P'.
unfold Sect in *. assert (forall x, IsHProp (P' x)).
pose (fun x : A => sig (fun y : Fin n => x = (g(inl y)).1 )) as X'.
assert (forall a : A, IsHProp (X' a)).
{ {
intros. intros a. unfold P'.
unfold X'.
apply hprop_allpath. apply hprop_allpath.
intros [x px] [y py]. intros [x px] [y py].
simple refine (path_sigma _ _ _ _ _). pose (p := px^ @ py).
* cbn. assert (p2 : p # (f^-1 (inl x)).2 = (f^-1 (inl y)).2).
pose (f(g(inl x))) as fgx. { apply path_ishprop. }
cut (g(inl x) = g(inl y)). simple refine (path_sigma' _ _ _).
{ - apply path_sum_inl with Unit.
intros q. refine (transport (fun z => z = inl y) (eisretr f (inl x)) _).
pose (ap f q). refine (transport (fun z => _ = z) (eisretr f (inl y)) _).
rewrite !fg in p. apply (ap f).
refine (path_sum_inl _ p). apply path_sigma_hprop. apply p.
} - rewrite transport_paths_FlFr.
apply path_sigma with (px^ @ py). hott_simpl; cbn.
rewrite ap_compose.
rewrite (ap_compose inl f^-1).
rewrite ap_inl_path_sum_inl.
repeat (rewrite transport_paths_FlFr; hott_simpl).
rewrite !ap_pp.
rewrite ap_V.
rewrite <- !other_adj.
rewrite <- (ap_compose f (f^-1)).
rewrite ap_equiv.
rewrite !ap_pp.
rewrite ap_pr1_path_sigma_hprop.
rewrite !concat_pp_p.
rewrite !ap_V.
rewrite concat_Vp.
rewrite (concat_p_pp (ap pr1 (eissect f (f^-1 (inl x))))^).
rewrite concat_Vp.
hott_simpl. }
exists (fun a => BuildhProp (P' a)).
exists (f^-1 (inr tt)).1.
split.
{ unshelve eapply BuildEquiv.
{ refine (fun x => x.2.1). }
apply isequiv_biinv.
unshelve esplit;
exists (fun x => (((f^-1 (inl x)).1; (x; idpath)))).
- intros [a [y p]]; cbn.
eapply path_sigma with p^.
apply path_ishprop. apply path_ishprop.
* apply path_ishprop. - intros x; cbn.
} reflexivity. }
pose (fun a => BuildhProp(X' a)) as Y. { intros a.
exists Y. unfold P'.
unfold Y, X'.
cbn.
unshelve esplit.
- intros [a [y p]]. apply y.
- apply isequiv_biinv.
unshelve esplit.
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
unfold Sect.
intros [a [y p]].
apply path_sigma with p^.
simpl.
rewrite transport_sigma.
simple refine (path_sigma _ _ _ _ _) ; simpl.
** rewrite transport_const ; reflexivity.
** apply path_ishprop.
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
unfold Sect.
intros x.
reflexivity.
Defined.
Definition new_el : {a' : A & forall z, X z =
lor (split.1 z) (merely (z = a'))}.
Proof.
exists ((Xequiv^-1 (inr tt)).1).
intros.
apply path_iff_hprop. apply path_iff_hprop.
- intros Xz. - intros Ha.
pose (Xequiv (z;Xz)) as fz. pose (y := f (a;Ha)).
pose (c := fz). assert (Hy : y = f (a; Ha)) by reflexivity.
assert (c = fz). reflexivity. destruct y as [y | []].
destruct c as [fz1 | fz2]. + refine (tr (inl _)).
* refine (tr(inl _)). exists y.
unfold split ; simpl. rewrite Hy.
exists fz1. by rewrite eissect.
rewrite X0. + refine (tr (inr (tr _))).
unfold fz. rewrite Hy.
destruct Xequiv as [? [? ? sect ?]]. by rewrite eissect.
compute. - intros Hstuff.
rewrite sect.
reflexivity.
* refine (tr(inr(tr _))).
destruct fz2.
rewrite X0.
unfold fz.
rewrite eissect.
reflexivity.
- intros X0.
strip_truncations. strip_truncations.
destruct X0 as [Xl | Xr]. destruct Hstuff as [[y Hy] | Ha].
* unfold split in Xl ; simpl in Xl. + rewrite Hy.
destruct Xequiv as [f [g fg gf adj]]. apply (f^-1 (inl y)).2.
destruct Xl as [m p]. + strip_truncations.
rewrite p. rewrite Ha.
apply (g (inl m)).2. apply (f^-1 (inr tt)).2. }
* strip_truncations.
rewrite Xr.
apply ((Xequiv^-1(inr tt)).2).
Defined. Defined.
End split.
End split.
End finite_hott.
Arguments Bfin {_} _. Arguments Bfin {_} _.
Arguments split {_} {_} _ _ _.
Section Bfin_not_set. Section Bfin_no_singletons.
Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}. Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}.
Proof. Proof.
exists x. exists x.
@ -272,9 +275,7 @@ Section Bfin_not_set.
* apply path_ishprop. * apply path_ishprop.
Defined. Defined.
Context `{Univalence}. Theorem no_singleton `{Univalence} (Hsing : Bfin {|base|}) : Empty.
Theorem no_singleton (Hsing : Bfin {|base|}) : Empty.
Proof. Proof.
destruct Hsing as [n equiv]. destruct Hsing as [n equiv].
strip_truncations. strip_truncations.
@ -291,9 +292,9 @@ Section Bfin_not_set.
apply (pos_neq_zero H'). apply (pos_neq_zero H').
- apply set_path2. - apply set_path2.
Defined. Defined.
End Bfin_no_singletons.
End Bfin_not_set. (* If A has decidable equality, then every Bfin subobject has decidable membership *)
Section dec_membership. Section dec_membership.
Variable (A : Type). Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}. Context `{DecidablePaths A} `{Univalence}.
@ -310,267 +311,166 @@ Section dec_membership.
rewrite p. rewrite p.
apply _. apply _.
- intros. - intros.
pose (new_el _ P n Hequiv) as b. destruct (split P n Hequiv) as
destruct b as [b HX']. (P' & b & HP' & HP).
destruct (split _ P n Hequiv) as [X' X'equiv]. simpl in HX'.
unfold member, sub_membership. unfold member, sub_membership.
rewrite (HX' a). rewrite (HP a).
pose (IHn X' X'equiv) as IH. destruct (IHn P' HP') as [IH | IH].
destruct IH as [IH | IH].
+ left. apply (tr (inl IH)). + left. apply (tr (inl IH)).
+ destruct (dec (a = b)) as [Hab | Hab]. + destruct (dec (a = b)) as [Hab | Hab].
left. apply (tr (inr (tr Hab))). left. apply (tr (inr (tr Hab))).
right. intros α. strip_truncations. right. intros α. strip_truncations.
destruct α as [β | γ]; [ | strip_truncations]; contradiction. destruct α as [? | ?]; [ | strip_truncations]; contradiction.
Defined. Defined.
End dec_membership. End dec_membership.
Section cowd. Section bfin_kfin.
Variable (A : Type).
Context `{Univalence}.
Definition bfin_to_kfin : forall (P : Sub A), Bfin P -> Kf_sub _ P.
Proof.
intros P [n f].
strip_truncations.
revert f. revert P.
induction n; intros P f.
- exists .
apply path_forall; intro a; simpl.
apply path_iff_hprop; [ | contradiction ].
intros p.
apply (f (a;p)).
- destruct (split P n f) as
(P' & b & HP' & HP).
destruct (IHn P' HP') as [Y HY].
exists (Y {|b|}).
apply path_forall; intro a. simpl.
rewrite <- HY.
apply HP.
Defined.
End bfin_kfin.
Section kfin_bfin.
Variable (A : Type). Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}. Context `{DecidablePaths A} `{Univalence}.
Definition cow := { X : Sub A | Bfin X}. Lemma bfin_union : @closedUnion A Bfin.
Definition empty_cow : cow.
Proof.
exists empty. apply empty_finite.
Defined.
Definition add_cow : forall a : A, cow -> cow.
Proof.
intros a [X PX].
exists (fun z => lor (X z) (merely (z = a))).
destruct (dec (a X)) as [Ha | Ha];
destruct PX as [n PX];
strip_truncations.
- (* a ∈ X *)
exists n. apply tr.
transitivity ({a : A & a X}); [ | apply PX ].
apply equiv_functor_sigma_id.
intro a'. eapply equiv_iff_hprop_uncurried ; split; cbn.
+ intros Ha'. strip_truncations.
destruct Ha' as [HXa' | Haa'].
* assumption.
* strip_truncations. rewrite Haa'. assumption.
+ intros HXa'. apply tr.
left. assumption.
- (* a ∉ X *)
exists (S n). apply tr.
destruct PX as [f [g Hfg Hgf adj]].
unshelve esplit.
+ intros [a' Ha']. cbn in Ha'.
destruct (dec (a' = a)) as [Haa' | Haa'].
* right. apply tt.
* assert (X a') as HXa'.
{ strip_truncations.
destruct Ha' as [Ha' | Ha']; [ assumption | ].
strip_truncations. by (contradiction (Haa' Ha')). }
apply (inl (f (a';HXa'))).
+ apply isequiv_biinv; simpl.
unshelve esplit; simpl.
* unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'. apply tr.
by left.
- exists a. apply (tr (inr (tr idpath))). }
simpl. intros [a' Ha'].
strip_truncations.
destruct Ha' as [HXa' | Haa']; simpl;
destruct (dec (a' = a)); simpl.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. done.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
* unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'. apply tr.
by left.
- exists a. apply (tr (inr (tr idpath))). }
simpl. intros [M | [] ].
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
{ destruct (g M) as [a' Ha']. rewrite Haa' in Ha'. by contradiction. }
{ f_ap. }
** destruct (dec (a = a)); try by contradiction.
reflexivity.
Defined.
Theorem cowy
(P : cow -> hProp)
(doge : P empty_cow)
(koeientaart : forall a c, P c -> P (add_cow a c))
:
forall X : cow, P X.
Proof.
intros [X [n FX]]. strip_truncations.
revert X FX.
induction n; intros X FX.
- pose (HX_emp:= X_empty _ X FX).
assert ((X; Build_Finite _ 0 (tr FX)) = empty_cow) as HX.
{ apply path_sigma' with HX_emp. apply path_ishprop. }
rewrite HX. assumption.
- pose (a' := new_el _ X n FX).
destruct a' as [a' Ha'].
destruct (split _ X n FX) as [X' FX'].
pose (X'cow := (X'; Build_Finite _ n (tr FX')) : cow).
assert ((X; Build_Finite _ (n.+1) (tr FX)) = add_cow a' X'cow) as .
{ simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
apply path_forall. intros a.
unfold X'cow.
specialize (Ha' a). rewrite Ha'. simpl. reflexivity. }
rewrite .
apply koeientaart.
apply IHn.
Defined.
Definition bfin_to_kfin : forall (X : Sub A), Bfin X -> Kf_sub _ X.
Proof.
intros X BFinX.
unfold Bfin in BFinX.
destruct BFinX as [n iso].
strip_truncations.
revert iso ; revert X.
induction n ; unfold Kf_sub, Kf_sub_intern.
- intros.
exists .
apply path_forall.
intro z.
simpl in *.
apply path_iff_hprop ; try contradiction.
destruct iso as [f f_equiv].
apply (fun Xz => f(z;Xz)).
- intros.
simpl in *.
destruct (new_el _ X n iso) as [a HXX'].
destruct (split _ X n iso) as [X' X'equiv].
destruct (IHn X' X'equiv) as [Y HY].
exists (Y {|a|}).
unfold map in *.
apply path_forall.
intro z.
rewrite union_isIn.
rewrite <- (ap (fun h => h z) HY).
rewrite HXX'.
cbn.
reflexivity.
Defined.
Lemma kfin_is_bfin : @closedUnion A Bfin.
Proof. Proof.
intros X Y HX HY. intros X Y HX HY.
pose (Xcow := (X; HX) : cow). destruct HX as [n fX].
pose (Ycow := (Y; HY) : cow). strip_truncations.
simple refine (cowy (fun C => Bfin (C.1 Y)) _ _ Xcow); simpl. revert fX. revert X.
- assert ((fun a => Trunc (-1) (Empty + Y a)) = (fun a => Y a)) as Help. induction n; intros X fX.
{ apply path_forall. intros z; simpl. - destruct HY as [m fY]. strip_truncations.
apply path_iff_ishprop. exists m. apply tr.
+ intros; strip_truncations; auto. transitivity {a : A & a Y}; [ | assumption ].
destruct X0; auto. destruct e. apply equiv_functor_sigma_id.
+ intros ?. apply tr. right; assumption. intros a.
(* TODO FIX THIS with sum_empty_l *)
}
rewrite Help. apply HY.
- intros a [X' HX'] [n FX'Y]. strip_truncations.
destruct (dec(a X')) as [HaX' | HaX'].
* exists n. apply tr.
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
apply equiv_functor_sigma_id. intro a'.
apply equiv_iff_hprop. apply equiv_iff_hprop.
{ intros Q. strip_truncations. * intros Ha. strip_truncations.
destruct Q as [Q | Q]. destruct Ha as [Ha | Ha]; [ | apply Ha ].
- strip_truncations. contradiction (fX (a;Ha)).
apply tr. left. * intros Ha. apply tr. by right.
destruct Q ; auto. - destruct (split X n fX) as
strip_truncations. rewrite t; assumption. (X' & b & HX' & HX).
- apply (tr (inr Q)). } assert (Bfin X') by (eexists; apply (tr HX')).
{ intros Q. strip_truncations. destruct (dec (b X')) as [HX'b | HX'b].
destruct Q as [Q | Q]; apply tr. + cut (X Y = X' Y).
- left. apply tr. left. done. { intros HXY. rewrite HXY.
- right. done. } by apply IHn. }
* destruct (dec (a Y)) as [HaY | HaY ]. apply path_forall. intro a.
** exists n. apply tr. unfold union, sub_union, lattice.max_fun.
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ]. apply path_iff_hprop.
apply equiv_functor_sigma_id. intro a'. * intros Ha.
apply equiv_iff_hprop. strip_truncations.
{ intros Q. strip_truncations. destruct Ha as [HXa | HYa]; [ | apply tr; by right ].
destruct Q as [Q | Q]. rewrite HX in HXa.
- strip_truncations. strip_truncations.
destruct HXa as [HX'a | Hab];
[ | strip_truncations ]; apply tr; left.
** done.
** rewrite Hab. apply HX'b.
* intros Ha.
strip_truncations. apply tr.
destruct Ha as [HXa | HYa]; [ left | by right ].
rewrite HX. apply (tr (inl HXa)).
+ (* b ∉ X' *)
destruct (IHn X' HX') as [n' fw].
strip_truncations.
destruct (dec (b Y)) as [HYb | HYb].
{ exists n'. apply tr.
transitivity {a : A & a X' Y}; [ | apply fw ].
apply equiv_functor_sigma_id. intro a.
apply equiv_iff_hprop; cbn; simple refine (Trunc_rec _).
{ intros [HXa | HYa].
- rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab]; apply tr.
* by left.
* right. strip_truncations.
rewrite Hab. apply HYb.
- apply tr. by right. }
{ intros [HX'a | HYa]; apply tr.
* left. rewrite HX.
apply (tr (inl HX'a)).
* by right. } }
{ exists (n'.+1).
apply tr. apply tr.
destruct Q. unshelve eapply BuildEquiv.
left. auto. { intros [a Ha]. cbn in Ha.
right. strip_truncations. rewrite t; assumption. destruct (dec (BuildhProp (a = b))) as [Hab | Hab].
- apply (tr (inr Q)). }
{ intros Q. strip_truncations.
destruct Q as [Q | Q]; apply tr.
- left. apply tr. left. done.
- right. done. }
** exists (n.+1). apply tr.
destruct FX'Y as [f [g Hfg Hgf adj]].
unshelve esplit.
{ intros [a' Ha']. cbn in Ha'.
destruct (dec (BuildhProp (a' = a))) as [Ha'a | Ha'a].
- right. apply tt. - right. apply tt.
- left. refine (f (a';_)). - left. refine (fw (a;_)).
strip_truncations. apply tr.
destruct Ha as [HXa | HYa].
+ left. rewrite HX in HXa.
strip_truncations. strip_truncations.
destruct Ha' as [Ha' | Ha']. destruct HXa as [HX'a | Hab']; [apply HX'a |].
+ strip_truncations. strip_truncations. contradiction.
destruct Ha' as [Ha' | Ha']. + right. apply HYa. }
* apply (tr (inl Ha')). { apply isequiv_biinv.
* strip_truncations. contradiction. unshelve esplit; cbn.
+ apply (tr (inr Ha')). } - unshelve eexists.
{ apply isequiv_biinv; simpl. + intros [m | []].
unshelve esplit; simpl. * destruct (fw^-1 m) as [a Ha].
- unfold Sect; simpl. exists a.
simple refine (_;_). strip_truncations. apply tr.
{ destruct 1 as [M | ?]. destruct Ha as [HX'a | HYa]; [ left | by right ].
- destruct (g M) as [a' Ha']. rewrite HX.
exists a'. apply (tr (inl HX'a)).
strip_truncations; apply tr. * exists b.
destruct Ha' as [Ha' | Ha']. rewrite HX.
+ left. apply (tr (inl Ha')). apply (tr (inl (tr (inr (tr idpath))))).
+ right. done. + intros [a Ha]; cbn.
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
{ intros [a' Ha']; simpl.
strip_truncations. strip_truncations.
destruct Ha' as [HXa' | Haa']; simpl; simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
destruct (dec (a' = a)); simpl. destruct (H a b); cbn.
** apply path_sigma' with p^. apply path_ishprop. * apply p^.
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop. * rewrite eissect; cbn.
** apply path_sigma' with p^. apply path_ishprop. reflexivity.
** rewrite Hgf; cbn. done. } - unshelve eexists. (* TODO: Duplication!! *)
- unfold Sect; simpl. + intros [m | []].
simple refine (_;_). * exists (fw^-1 m).1.
{ destruct 1 as [M | ?]. simple refine (Trunc_rec _ (fw^-1 m).2).
- (* destruct (g M) as [a' Ha']. *) intros [HX'a | HYa]; apply tr; [ left | by right ].
exists (g M).1. rewrite HX.
simple refine (Trunc_rec _ (g M).2). apply (tr (inl HX'a)).
intros Ha'. * exists b.
apply tr. rewrite HX.
(* strip_truncations; apply tr. *) apply (tr (inl (tr (inr (tr idpath))))).
destruct Ha' as [Ha' | Ha']. + intros [m | []]; cbn.
+ left. apply (tr (inl Ha')). destruct (dec (_ = b)) as [Hb | Hb]; cbn.
+ right. done. { destruct (fw^-1 m) as [a Ha]. simpl in Hb.
- exists a. apply (tr (inl (tr (inr (tr idpath))))). } simple refine (Trunc_rec _ Ha). clear Ha.
simpl. intros [M | [] ]. rewrite Hb.
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl. intros [HX'b2 | HYb2]; contradiction. }
{ destruct (g M) as [a' Ha']. simpl in Haa'. { f_ap. transitivity (fw (fw^-1 m)).
strip_truncations. - f_ap.
rewrite Haa' in Ha'. destruct Ha'; by contradiction. } apply path_sigma' with idpath.
{ f_ap. transitivity (f (g M)); [ | apply Hfg]. apply path_ishprop.
f_ap. apply path_sigma' with idpath. - apply eisretr. }
apply path_ishprop. } destruct (dec (b = b)); [ reflexivity | contradiction ]. } }
** destruct (dec (a = a)); try by contradiction.
reflexivity. }
Defined. Defined.
End cowd. Definition FSet_to_Bfin : forall (X : FSet A), Bfin (map X).
Section Kf_to_Bf.
Context `{Univalence}.
Definition FSet_to_Bfin (A : Type) `{DecidablePaths A} : forall (X : FSet A), Bfin (map X).
Proof. Proof.
hinduction; try (intros; apply path_ishprop). hinduction; try (intros; apply path_ishprop).
- exists 0. apply tr. simpl. - exists 0. apply tr. simpl.
@ -589,11 +489,13 @@ Section Kf_to_Bf.
* exists (fun _ => (a; tr(idpath))). * exists (fun _ => (a; tr(idpath))).
intros []. reflexivity. intros []. reflexivity.
- intros Y1 Y2 HY1 HY2. - intros Y1 Y2 HY1 HY2.
apply kfin_is_bfin; auto. apply bfin_union; auto.
Defined. Defined.
Instance Kf_to_Bf (X : Type) (Hfin : Kf X) `{DecidablePaths X} : Finite X. End kfin_bfin.
Proof.
Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
Proof.
apply Kf_unfold in Hfin. apply Kf_unfold in Hfin.
destruct Hfin as [Y HY]. destruct Hfin as [Y HY].
pose (X' := FSet_to_Bfin _ Y). pose (X' := FSet_to_Bfin _ Y).
@ -608,6 +510,4 @@ Section Kf_to_Bf.
apply path_ishprop. apply path_ishprop.
* exists (fun a => (a;HY a)). * exists (fun a => (a;HY a)).
intros b. reflexivity. intros b. reflexivity.
Defined. Defined.
End Kf_to_Bf.

View File

@ -63,7 +63,7 @@ Section k_fin_lemoo_projective.
Global Instance kuratowski_projective_oo (X : Type) (Hfin : Kf X) : IsProjective X. Global Instance kuratowski_projective_oo (X : Type) (Hfin : Kf X) : IsProjective X.
Proof. Proof.
assert (Finite X). assert (Finite X).
{ apply Kf_to_Bf; auto. { eapply Kf_to_Bf; auto.
intros pp qq. apply LEMoo. } intros pp qq. apply LEMoo. }
apply _. apply _.
Defined. Defined.
@ -78,7 +78,7 @@ Section k_fin_lem_projective.
Global Instance kuratowski_projective (Hfin : Kf X) : IsProjective X. Global Instance kuratowski_projective (Hfin : Kf X) : IsProjective X.
Proof. Proof.
assert (Finite X). assert (Finite X).
{ apply Kf_to_Bf; auto. { eapply Kf_to_Bf; auto.
intros pp qq. apply LEM. apply _. } intros pp qq. apply LEM. apply _. }
apply _. apply _.
Defined. Defined.