mirror of https://github.com/nmvdw/HITs-Examples
The underlying type need not be an hset for the splitting lemma
This commit is contained in:
parent
eef533e345
commit
5e4091409d
|
@ -5,34 +5,34 @@ Require Import fsets.properties.
|
|||
|
||||
Section finite_hott.
|
||||
Variable (A : Type).
|
||||
Context `{Univalence} `{IsHSet A}.
|
||||
Context `{Univalence}.
|
||||
|
||||
(* A subobject is B-finite if its extension is B-finite as a type *)
|
||||
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
|
||||
|
||||
Global Instance singleton_contr a : Contr {b : A & b ∈ {|a|}}.
|
||||
Global Instance singleton_contr a `{IsHSet A} : Contr {b : A & b ∈ {|a|}}.
|
||||
Proof.
|
||||
exists (a; tr idpath).
|
||||
intros [b p].
|
||||
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
|
||||
clear p; intro p. simpl.
|
||||
apply path_sigma' with (p^).
|
||||
apply path_ishprop.
|
||||
apply path_sigma_hprop; simpl.
|
||||
apply p^.
|
||||
Defined.
|
||||
|
||||
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b ∈ {|a|}}.
|
||||
Proof.
|
||||
intros _. apply (center {b : A & b ∈ {|a|}}).
|
||||
intros _. apply (a; tr idpath).
|
||||
Defined.
|
||||
|
||||
Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
|
||||
Global Instance singleton_fin_equiv a `{IsHSet A} : IsEquiv (singleton_fin_equiv' a).
|
||||
Proof. apply _. Defined.
|
||||
|
||||
Definition singleton : closedSingleton Bfin.
|
||||
Definition singleton `{IsHSet A} : closedSingleton Bfin.
|
||||
Proof.
|
||||
intros a.
|
||||
simple refine (Build_Finite _ 1 _).
|
||||
apply tr.
|
||||
apply tr.
|
||||
symmetry.
|
||||
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
|
||||
Defined.
|
||||
|
@ -48,9 +48,8 @@ Section finite_hott.
|
|||
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
|
||||
Proof.
|
||||
intros X Y.
|
||||
destruct Y as [n Xn].
|
||||
destruct Y as [n f].
|
||||
strip_truncations.
|
||||
destruct Xn as [f [g fg gf adj]].
|
||||
destruct n.
|
||||
- refine (tr(inl _)).
|
||||
apply path_forall. intro z.
|
||||
|
@ -59,10 +58,10 @@ Section finite_hott.
|
|||
contradiction (f (z;p)).
|
||||
* contradiction.
|
||||
- refine (tr(inr _)).
|
||||
apply (tr(g(inr tt))).
|
||||
apply (tr(f^-1(inr tt))).
|
||||
Defined.
|
||||
|
||||
Lemma no_union
|
||||
Lemma no_union `{IsHSet A}
|
||||
(f : forall (X Y : Sub A),
|
||||
Bfin X -> Bfin Y -> Bfin (X ∪ Y))
|
||||
(a b : A) :
|
||||
|
@ -133,90 +132,125 @@ Section finite_hott.
|
|||
** refine (px @ _ @ py^). symmetry. auto.
|
||||
** apply (px @ py^).
|
||||
Defined.
|
||||
|
||||
Section empty.
|
||||
Variable (X : A -> hProp)
|
||||
(Xequiv : {a : A & a ∈ X} <~> Fin 0).
|
||||
|
||||
Lemma X_empty : X = ∅.
|
||||
Proof.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
apply path_iff_hprop ; try contradiction.
|
||||
intro x.
|
||||
destruct Xequiv as [f fequiv].
|
||||
contradiction (f(z;x)).
|
||||
Defined.
|
||||
|
||||
End empty.
|
||||
|
||||
Section split.
|
||||
Variable (P : A -> hProp)
|
||||
(n : nat)
|
||||
(Xequiv : {a : A & P a } <~> Fin n + Unit).
|
||||
|
||||
Definition split : exists P' : Sub A, exists b : A,
|
||||
({a : A & P' a} <~> Fin n) * (forall x, P x = (P' x ∨ merely (x = b))).
|
||||
Proof.
|
||||
destruct Xequiv as [f [g fg gf adj]].
|
||||
unfold Sect in *.
|
||||
pose (fun x : A => sig (fun y : Fin n => x = (g (inl y)).1)) as P'.
|
||||
assert (forall x, IsHProp (P' x)).
|
||||
{
|
||||
intros a. unfold P'.
|
||||
apply hprop_allpath.
|
||||
intros [x px] [y py].
|
||||
simple refine (path_sigma _ _ _ _ _); [ simpl | apply path_ishprop ].
|
||||
apply path_sum_inl with Unit.
|
||||
cut (g (inl x) = g (inl y)).
|
||||
{ intros p.
|
||||
pose (ap f p) as Hp.
|
||||
by rewrite !fg in Hp. }
|
||||
apply path_sigma with (px^ @ py).
|
||||
apply path_ishprop.
|
||||
}
|
||||
exists (fun a => BuildhProp (P' a)).
|
||||
exists (g (inr tt)).1.
|
||||
split.
|
||||
{ unshelve eapply BuildEquiv.
|
||||
{ refine (fun x => x.2.1). }
|
||||
apply isequiv_biinv.
|
||||
unshelve esplit;
|
||||
exists (fun x => (((g (inl x)).1; (x; idpath)))).
|
||||
- intros [a [y p]]; cbn.
|
||||
eapply path_sigma with p^.
|
||||
apply path_ishprop.
|
||||
- intros x; cbn.
|
||||
reflexivity. }
|
||||
{ intros a.
|
||||
unfold P'.
|
||||
apply path_iff_hprop.
|
||||
- intros Ha.
|
||||
pose (y := f (a;Ha)).
|
||||
assert (Hy : y = f (a; Ha)) by reflexivity.
|
||||
destruct y as [y | []].
|
||||
+ refine (tr (inl _)).
|
||||
exists y.
|
||||
rewrite Hy.
|
||||
by rewrite gf.
|
||||
+ refine (tr (inr (tr _))).
|
||||
rewrite Hy.
|
||||
by rewrite gf.
|
||||
- intros Hstuff.
|
||||
strip_truncations.
|
||||
destruct Hstuff as [[y Hy] | Ha].
|
||||
+ rewrite Hy.
|
||||
apply (g (inl y)).2.
|
||||
+ strip_truncations.
|
||||
rewrite Ha.
|
||||
apply (g (inr tt)).2. }
|
||||
Defined.
|
||||
|
||||
End split.
|
||||
End finite_hott.
|
||||
|
||||
Arguments Bfin {_} _.
|
||||
Section empty.
|
||||
Variable (A : Type).
|
||||
Variable (X : A -> hProp)
|
||||
(Xequiv : {a : A & a ∈ X} <~> Fin 0).
|
||||
Context `{Univalence}.
|
||||
Lemma X_empty : X = ∅.
|
||||
Proof.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
apply path_iff_hprop ; try contradiction.
|
||||
intro x.
|
||||
destruct Xequiv as [f fequiv].
|
||||
contradiction (f(z;x)).
|
||||
Defined.
|
||||
End empty.
|
||||
|
||||
|
||||
(* TODO: This should go into the HoTT library or in some other places *)
|
||||
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
|
||||
ap inl (path_sum_inl B p) = p.
|
||||
Proof.
|
||||
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
|
||||
[ | apply (eisretr_path_sum _) ].
|
||||
destruct (path_sum_inl B p).
|
||||
reflexivity.
|
||||
Defined.
|
||||
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
|
||||
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
|
||||
Proof. destruct p. hott_simpl. Defined.
|
||||
(* END TODO *)
|
||||
|
||||
Section split.
|
||||
Context `{Univalence}.
|
||||
Variable (A : Type).
|
||||
Variable (P : A -> hProp)
|
||||
(n : nat)
|
||||
(f : {a : A & P a } <~> Fin n + Unit).
|
||||
|
||||
Definition split : exists P' : Sub A, exists b : A,
|
||||
({a : A & P' a} <~> Fin n) * (forall x, P x = (P' x ∨ merely (x = b))).
|
||||
Proof.
|
||||
pose (fun x : A => sig (fun y : Fin n => x = (f^-1 (inl y)).1)) as P'.
|
||||
assert (forall x, IsHProp (P' x)).
|
||||
{
|
||||
intros a. unfold P'.
|
||||
apply hprop_allpath.
|
||||
intros [x px] [y py].
|
||||
pose (p := px^ @ py).
|
||||
assert (p2 : p # (f^-1 (inl x)).2 = (f^-1 (inl y)).2).
|
||||
{ apply path_ishprop. }
|
||||
simple refine (path_sigma' _ _ _).
|
||||
- apply path_sum_inl with Unit.
|
||||
refine (transport (fun z => z = inl y) (eisretr f (inl x)) _).
|
||||
refine (transport (fun z => _ = z) (eisretr f (inl y)) _).
|
||||
apply (ap f).
|
||||
apply path_sigma_hprop. apply p.
|
||||
- rewrite transport_paths_FlFr.
|
||||
hott_simpl; cbn.
|
||||
rewrite ap_compose.
|
||||
rewrite (ap_compose inl f^-1).
|
||||
rewrite ap_inl_path_sum_inl.
|
||||
repeat (rewrite transport_paths_FlFr; hott_simpl).
|
||||
rewrite !ap_pp.
|
||||
rewrite ap_V.
|
||||
rewrite <- !other_adj.
|
||||
rewrite <- (ap_compose f (f^-1)).
|
||||
rewrite ap_equiv.
|
||||
rewrite !ap_pp.
|
||||
rewrite ap_pr1_path_sigma_hprop.
|
||||
rewrite !concat_pp_p.
|
||||
rewrite !ap_V.
|
||||
rewrite concat_Vp.
|
||||
rewrite (concat_p_pp (ap pr1 (eissect f (f^-1 (inl x))))^).
|
||||
rewrite concat_Vp.
|
||||
hott_simpl. }
|
||||
exists (fun a => BuildhProp (P' a)).
|
||||
exists (f^-1 (inr tt)).1.
|
||||
split.
|
||||
{ unshelve eapply BuildEquiv.
|
||||
{ refine (fun x => x.2.1). }
|
||||
apply isequiv_biinv.
|
||||
unshelve esplit;
|
||||
exists (fun x => (((f^-1 (inl x)).1; (x; idpath)))).
|
||||
- intros [a [y p]]; cbn.
|
||||
eapply path_sigma with p^.
|
||||
apply path_ishprop.
|
||||
- intros x; cbn.
|
||||
reflexivity. }
|
||||
{ intros a.
|
||||
unfold P'.
|
||||
apply path_iff_hprop.
|
||||
- intros Ha.
|
||||
pose (y := f (a;Ha)).
|
||||
assert (Hy : y = f (a; Ha)) by reflexivity.
|
||||
destruct y as [y | []].
|
||||
+ refine (tr (inl _)).
|
||||
exists y.
|
||||
rewrite Hy.
|
||||
by rewrite eissect.
|
||||
+ refine (tr (inr (tr _))).
|
||||
rewrite Hy.
|
||||
by rewrite eissect.
|
||||
- intros Hstuff.
|
||||
strip_truncations.
|
||||
destruct Hstuff as [[y Hy] | Ha].
|
||||
+ rewrite Hy.
|
||||
apply (f^-1 (inl y)).2.
|
||||
+ strip_truncations.
|
||||
rewrite Ha.
|
||||
apply (f^-1 (inr tt)).2. }
|
||||
Defined.
|
||||
End split.
|
||||
|
||||
Arguments Bfin {_} _.
|
||||
Arguments split {_} {_} _ _ _.
|
||||
|
||||
(* If A has decidable equality, then every Bfin subobject has decidable membership *)
|
||||
Section dec_membership.
|
||||
Variable (A : Type).
|
||||
Context `{DecidablePaths A} `{Univalence}.
|
||||
|
@ -233,7 +267,7 @@ Section dec_membership.
|
|||
rewrite p.
|
||||
apply _.
|
||||
- intros.
|
||||
destruct (split _ P n Hequiv) as
|
||||
destruct (split P n Hequiv) as
|
||||
(P' & b & HP' & HP).
|
||||
unfold member, sub_membership.
|
||||
rewrite (HP a).
|
||||
|
@ -242,114 +276,17 @@ Section dec_membership.
|
|||
+ destruct (dec (a = b)) as [Hab | Hab].
|
||||
left. apply (tr (inr (tr Hab))).
|
||||
right. intros α. strip_truncations.
|
||||
destruct α as [β | γ]; [ | strip_truncations]; contradiction.
|
||||
destruct α as [? | ?]; [ | strip_truncations]; contradiction.
|
||||
Defined.
|
||||
End dec_membership.
|
||||
|
||||
Section cowd.
|
||||
Section bfin_kfin.
|
||||
Variable (A : Type).
|
||||
Context `{DecidablePaths A} `{Univalence}.
|
||||
|
||||
Definition cow := { X : Sub A | Bfin X}.
|
||||
Definition empty_cow : cow.
|
||||
Proof.
|
||||
exists empty. apply empty_finite.
|
||||
Defined.
|
||||
|
||||
Definition add_cow : forall a : A, cow -> cow.
|
||||
Proof.
|
||||
intros a [X PX].
|
||||
exists (fun z => lor (X z) (merely (z = a))).
|
||||
destruct (dec (a ∈ X)) as [Ha | Ha];
|
||||
destruct PX as [n PX];
|
||||
strip_truncations.
|
||||
- (* a ∈ X *)
|
||||
exists n. apply tr.
|
||||
transitivity ({a : A & a ∈ X}); [ | apply PX ].
|
||||
apply equiv_functor_sigma_id.
|
||||
intro a'. eapply equiv_iff_hprop_uncurried ; split; cbn.
|
||||
+ intros Ha'. strip_truncations.
|
||||
destruct Ha' as [HXa' | Haa'].
|
||||
* assumption.
|
||||
* strip_truncations. rewrite Haa'. assumption.
|
||||
+ intros HXa'. apply tr.
|
||||
left. assumption.
|
||||
- (* a ∉ X *)
|
||||
exists (S n). apply tr.
|
||||
destruct PX as [f [g Hfg Hgf adj]].
|
||||
unshelve esplit.
|
||||
+ intros [a' Ha']. cbn in Ha'.
|
||||
destruct (dec (a' = a)) as [Haa' | Haa'].
|
||||
* right. apply tt.
|
||||
* assert (X a') as HXa'.
|
||||
{ strip_truncations.
|
||||
destruct Ha' as [Ha' | Ha']; [ assumption | ].
|
||||
strip_truncations. by (contradiction (Haa' Ha')). }
|
||||
apply (inl (f (a';HXa'))).
|
||||
+ apply isequiv_biinv; simpl.
|
||||
unshelve esplit; simpl.
|
||||
* unfold Sect; simpl.
|
||||
simple refine (_;_).
|
||||
{ destruct 1 as [M | ?].
|
||||
- destruct (g M) as [a' Ha'].
|
||||
exists a'. apply tr.
|
||||
by left.
|
||||
- exists a. apply (tr (inr (tr idpath))). }
|
||||
simpl. intros [a' Ha'].
|
||||
strip_truncations.
|
||||
destruct Ha' as [HXa' | Haa']; simpl;
|
||||
destruct (dec (a' = a)); simpl.
|
||||
** apply path_sigma' with p^. apply path_ishprop.
|
||||
** rewrite Hgf; cbn. done.
|
||||
** apply path_sigma' with p^. apply path_ishprop.
|
||||
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
|
||||
* unfold Sect; simpl.
|
||||
simple refine (_;_).
|
||||
{ destruct 1 as [M | ?].
|
||||
- destruct (g M) as [a' Ha'].
|
||||
exists a'. apply tr.
|
||||
by left.
|
||||
- exists a. apply (tr (inr (tr idpath))). }
|
||||
simpl. intros [M | [] ].
|
||||
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
|
||||
{ destruct (g M) as [a' Ha']. rewrite Haa' in Ha'. by contradiction. }
|
||||
{ f_ap. }
|
||||
** destruct (dec (a = a)); try by contradiction.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Theorem cowy
|
||||
(P : cow -> hProp)
|
||||
(doge : P empty_cow)
|
||||
(koeientaart : forall a c, P c -> P (add_cow a c))
|
||||
:
|
||||
forall X : cow, P X.
|
||||
Proof.
|
||||
intros [X [n FX]]. strip_truncations.
|
||||
revert X FX.
|
||||
induction n; intros X FX.
|
||||
- pose (HX_emp:= X_empty _ X FX).
|
||||
assert ((X; Build_Finite _ 0 (tr FX)) = empty_cow) as HX.
|
||||
{ apply path_sigma' with HX_emp. apply path_ishprop. }
|
||||
rewrite HX. assumption.
|
||||
- destruct (split _ X n FX) as
|
||||
(X' & b & FX' & HX).
|
||||
pose (X'cow := (X'; Build_Finite _ n (tr FX')) : cow).
|
||||
assert ((X; Build_Finite _ (n.+1) (tr FX)) = add_cow b X'cow) as ℵ.
|
||||
{ simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
|
||||
apply path_forall. intros a.
|
||||
unfold X'cow.
|
||||
rewrite (HX a). simpl. reflexivity. }
|
||||
rewrite ℵ.
|
||||
apply koeientaart.
|
||||
apply IHn.
|
||||
Defined.
|
||||
|
||||
Context `{Univalence}.
|
||||
Definition bfin_to_kfin : forall (P : Sub A), Bfin P -> Kf_sub _ P.
|
||||
Proof.
|
||||
intros P [n f].
|
||||
strip_truncations.
|
||||
unfold Kf_sub, Kf_sub_intern.
|
||||
revert f. revert P.
|
||||
induction n; intros P f.
|
||||
- exists ∅.
|
||||
|
@ -357,7 +294,7 @@ Section cowd.
|
|||
apply path_iff_hprop; [ | contradiction ].
|
||||
intros p.
|
||||
apply (f (a;p)).
|
||||
- destruct (split _ P n f) as
|
||||
- destruct (split P n f) as
|
||||
(P' & b & HP' & HP).
|
||||
destruct (IHn P' HP') as [Y HY].
|
||||
exists (Y ∪ {|b|}).
|
||||
|
@ -365,8 +302,13 @@ Section cowd.
|
|||
rewrite <- HY.
|
||||
apply HP.
|
||||
Defined.
|
||||
End bfin_kfin.
|
||||
|
||||
Lemma kfin_is_bfin : @closedUnion A Bfin.
|
||||
Section kfin_bfin.
|
||||
Variable (A : Type).
|
||||
Context `{DecidablePaths A} `{Univalence}.
|
||||
|
||||
Lemma bfin_union : @closedUnion A Bfin.
|
||||
Proof.
|
||||
intros X Y HX HY.
|
||||
destruct HX as [n fX].
|
||||
|
@ -383,7 +325,7 @@ Section cowd.
|
|||
destruct Ha as [Ha | Ha]; [ | apply Ha ].
|
||||
contradiction (fX (a;Ha)).
|
||||
* intros Ha. apply tr. by right.
|
||||
- destruct (split _ X n fX) as
|
||||
- destruct (split X n fX) as
|
||||
(X' & b & HX' & HX).
|
||||
assert (Bfin X') by (eexists; apply (tr HX')).
|
||||
destruct (dec (b ∈ X')) as [HX'b | HX'b].
|
||||
|
@ -484,12 +426,7 @@ Section cowd.
|
|||
destruct (dec (b = b)); [ reflexivity | contradiction ]. } }
|
||||
Defined.
|
||||
|
||||
End cowd.
|
||||
|
||||
Section Kf_to_Bf.
|
||||
Context `{Univalence}.
|
||||
|
||||
Definition FSet_to_Bfin (A : Type) `{DecidablePaths A} : forall (X : FSet A), Bfin (map X).
|
||||
Definition FSet_to_Bfin : forall (X : FSet A), Bfin (map X).
|
||||
Proof.
|
||||
hinduction; try (intros; apply path_ishprop).
|
||||
- exists 0. apply tr. simpl.
|
||||
|
@ -508,25 +445,25 @@ Section Kf_to_Bf.
|
|||
* exists (fun _ => (a; tr(idpath))).
|
||||
intros []. reflexivity.
|
||||
- intros Y1 Y2 HY1 HY2.
|
||||
apply kfin_is_bfin; auto.
|
||||
apply bfin_union; auto.
|
||||
Defined.
|
||||
|
||||
Instance Kf_to_Bf (X : Type) (Hfin : Kf X) `{DecidablePaths X} : Finite X.
|
||||
Proof.
|
||||
apply Kf_unfold in Hfin.
|
||||
destruct Hfin as [Y HY].
|
||||
pose (X' := FSet_to_Bfin _ Y).
|
||||
unfold Bfin in X'.
|
||||
simple refine (finite_equiv' _ _ X').
|
||||
unshelve esplit.
|
||||
- intros [a ?]. apply a.
|
||||
- apply isequiv_biinv. split.
|
||||
* exists (fun a => (a;HY a)).
|
||||
intros [b Hb].
|
||||
apply path_sigma' with idpath.
|
||||
apply path_ishprop.
|
||||
* exists (fun a => (a;HY a)).
|
||||
intros b. reflexivity.
|
||||
Defined.
|
||||
End kfin_bfin.
|
||||
|
||||
End Kf_to_Bf.
|
||||
Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
|
||||
Proof.
|
||||
apply Kf_unfold in Hfin.
|
||||
destruct Hfin as [Y HY].
|
||||
pose (X' := FSet_to_Bfin _ Y).
|
||||
unfold Bfin in X'.
|
||||
simple refine (finite_equiv' _ _ X').
|
||||
unshelve esplit.
|
||||
- intros [a ?]. apply a.
|
||||
- apply isequiv_biinv. split.
|
||||
* exists (fun a => (a;HY a)).
|
||||
intros [b Hb].
|
||||
apply path_sigma' with idpath.
|
||||
apply path_ishprop.
|
||||
* exists (fun a => (a;HY a)).
|
||||
intros b. reflexivity.
|
||||
Defined.
|
||||
|
|
|
@ -63,7 +63,7 @@ Section k_fin_lemoo_projective.
|
|||
Global Instance kuratowski_projective_oo (X : Type) (Hfin : Kf X) : IsProjective X.
|
||||
Proof.
|
||||
assert (Finite X).
|
||||
{ apply Kf_to_Bf; auto.
|
||||
{ eapply Kf_to_Bf; auto.
|
||||
intros pp qq. apply LEMoo. }
|
||||
apply _.
|
||||
Defined.
|
||||
|
@ -78,7 +78,7 @@ Section k_fin_lem_projective.
|
|||
Global Instance kuratowski_projective (Hfin : Kf X) : IsProjective X.
|
||||
Proof.
|
||||
assert (Finite X).
|
||||
{ apply Kf_to_Bf; auto.
|
||||
{ eapply Kf_to_Bf; auto.
|
||||
intros pp qq. apply LEM. apply _. }
|
||||
apply _.
|
||||
Defined.
|
||||
|
|
Loading…
Reference in New Issue