Merge branch 'ezsplit'

This commit is contained in:
Dan Frumin 2017-08-24 16:45:37 +02:00
commit 5afb85b000
2 changed files with 295 additions and 395 deletions

View File

@ -5,30 +5,30 @@ Require Import fsets.properties.
Section finite_hott.
Variable (A : Type).
Context `{Univalence} `{IsHSet A}.
Context `{Univalence}.
(* A subobject is B-finite if its extension is B-finite as a type *)
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}).
Global Instance singleton_contr a : Contr {b : A & b {|a|}}.
Global Instance singleton_contr a `{IsHSet A} : Contr {b : A & b {|a|}}.
Proof.
exists (a; tr idpath).
intros [b p].
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
clear p; intro p. simpl.
apply path_sigma' with (p^).
apply path_ishprop.
apply path_sigma_hprop; simpl.
apply p^.
Defined.
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b {|a|}}.
Proof.
intros _. apply (center {b : A & b {|a|}}).
intros _. apply (a; tr idpath).
Defined.
Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
Global Instance singleton_fin_equiv a `{IsHSet A} : IsEquiv (singleton_fin_equiv' a).
Proof. apply _. Defined.
Definition singleton : closedSingleton Bfin.
Definition singleton `{IsHSet A} : closedSingleton Bfin.
Proof.
intros a.
simple refine (Build_Finite _ 1 _).
@ -48,9 +48,8 @@ Section finite_hott.
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
Proof.
intros X Y.
destruct Y as [n Xn].
destruct Y as [n f].
strip_truncations.
destruct Xn as [f [g fg gf adj]].
destruct n.
- refine (tr(inl _)).
apply path_forall. intro z.
@ -59,10 +58,10 @@ Section finite_hott.
contradiction (f (z;p)).
* contradiction.
- refine (tr(inr _)).
apply (tr(g(inr tt))).
apply (tr(f^-1(inr tt))).
Defined.
Lemma no_union
Lemma no_union `{IsHSet A}
(f : forall (X Y : Sub A),
Bfin X -> Bfin Y -> Bfin (X Y))
(a b : A) :
@ -133,121 +132,125 @@ Section finite_hott.
** refine (px @ _ @ py^). symmetry. auto.
** apply (px @ py^).
Defined.
Section empty.
Variable (X : A -> hProp)
(Xequiv : {a : A & a X} <~> Fin 0).
Lemma X_empty : X = .
Proof.
apply path_forall.
intro z.
apply path_iff_hprop ; try contradiction.
intro x.
destruct Xequiv as [f fequiv].
contradiction (f(z;x)).
Defined.
End empty.
Section split.
Variable (X : A -> hProp)
(n : nat)
(Xequiv : {a : A & a X} <~> Fin n + Unit).
Definition split : {X' : A -> hProp & {a : A & a X'} <~> Fin n}.
Proof.
destruct Xequiv as [f [g fg gf adj]].
unfold Sect in *.
pose (fun x : A => sig (fun y : Fin n => x = (g(inl y)).1 )) as X'.
assert (forall a : A, IsHProp (X' a)).
{
intros.
unfold X'.
apply hprop_allpath.
intros [x px] [y py].
simple refine (path_sigma _ _ _ _ _).
* cbn.
pose (f(g(inl x))) as fgx.
cut (g(inl x) = g(inl y)).
{
intros q.
pose (ap f q).
rewrite !fg in p.
refine (path_sum_inl _ p).
}
apply path_sigma with (px^ @ py).
apply path_ishprop.
* apply path_ishprop.
}
pose (fun a => BuildhProp(X' a)) as Y.
exists Y.
unfold Y, X'.
cbn.
unshelve esplit.
- intros [a [y p]]. apply y.
- apply isequiv_biinv.
unshelve esplit.
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
unfold Sect.
intros [a [y p]].
apply path_sigma with p^.
simpl.
rewrite transport_sigma.
simple refine (path_sigma _ _ _ _ _) ; simpl.
** rewrite transport_const ; reflexivity.
** apply path_ishprop.
* exists (fun x => (( (g(inl x)).1 ;(x;idpath)))).
unfold Sect.
intros x.
reflexivity.
Defined.
Definition new_el : {a' : A & forall z, X z =
lor (split.1 z) (merely (z = a'))}.
Proof.
exists ((Xequiv^-1 (inr tt)).1).
intros.
apply path_iff_hprop.
- intros Xz.
pose (Xequiv (z;Xz)) as fz.
pose (c := fz).
assert (c = fz). reflexivity.
destruct c as [fz1 | fz2].
* refine (tr(inl _)).
unfold split ; simpl.
exists fz1.
rewrite X0.
unfold fz.
destruct Xequiv as [? [? ? sect ?]].
compute.
rewrite sect.
reflexivity.
* refine (tr(inr(tr _))).
destruct fz2.
rewrite X0.
unfold fz.
rewrite eissect.
reflexivity.
- intros X0.
strip_truncations.
destruct X0 as [Xl | Xr].
* unfold split in Xl ; simpl in Xl.
destruct Xequiv as [f [g fg gf adj]].
destruct Xl as [m p].
rewrite p.
apply (g (inl m)).2.
* strip_truncations.
rewrite Xr.
apply ((Xequiv^-1(inr tt)).2).
Defined.
End split.
End finite_hott.
Arguments Bfin {_} _.
Section empty.
Variable (A : Type).
Variable (X : A -> hProp)
(Xequiv : {a : A & a X} <~> Fin 0).
Context `{Univalence}.
Lemma X_empty : X = .
Proof.
apply path_forall.
intro z.
apply path_iff_hprop ; try contradiction.
intro x.
destruct Xequiv as [f fequiv].
contradiction (f(z;x)).
Defined.
End empty.
Section Bfin_not_set.
(* TODO: This should go into the HoTT library or in some other places *)
Lemma ap_inl_path_sum_inl {A B} (x y : A) (p : inl x = inl y) :
ap inl (path_sum_inl B p) = p.
Proof.
transitivity (@path_sum _ B (inl x) (inl y) (path_sum_inl B p));
[ | apply (eisretr_path_sum _) ].
destruct (path_sum_inl B p).
reflexivity.
Defined.
Lemma ap_equiv {A B} (f : A <~> B) {x y : A} (p : x = y) :
ap (f^-1 o f) p = eissect f x @ p @ (eissect f y)^.
Proof. destruct p. hott_simpl. Defined.
(* END TODO *)
Section split.
Context `{Univalence}.
Variable (A : Type).
Variable (P : A -> hProp)
(n : nat)
(f : {a : A & P a } <~> Fin n + Unit).
Definition split : exists P' : Sub A, exists b : A,
({a : A & P' a} <~> Fin n) * (forall x, P x = (P' x merely (x = b))).
Proof.
pose (fun x : A => sig (fun y : Fin n => x = (f^-1 (inl y)).1)) as P'.
assert (forall x, IsHProp (P' x)).
{
intros a. unfold P'.
apply hprop_allpath.
intros [x px] [y py].
pose (p := px^ @ py).
assert (p2 : p # (f^-1 (inl x)).2 = (f^-1 (inl y)).2).
{ apply path_ishprop. }
simple refine (path_sigma' _ _ _).
- apply path_sum_inl with Unit.
refine (transport (fun z => z = inl y) (eisretr f (inl x)) _).
refine (transport (fun z => _ = z) (eisretr f (inl y)) _).
apply (ap f).
apply path_sigma_hprop. apply p.
- rewrite transport_paths_FlFr.
hott_simpl; cbn.
rewrite ap_compose.
rewrite (ap_compose inl f^-1).
rewrite ap_inl_path_sum_inl.
repeat (rewrite transport_paths_FlFr; hott_simpl).
rewrite !ap_pp.
rewrite ap_V.
rewrite <- !other_adj.
rewrite <- (ap_compose f (f^-1)).
rewrite ap_equiv.
rewrite !ap_pp.
rewrite ap_pr1_path_sigma_hprop.
rewrite !concat_pp_p.
rewrite !ap_V.
rewrite concat_Vp.
rewrite (concat_p_pp (ap pr1 (eissect f (f^-1 (inl x))))^).
rewrite concat_Vp.
hott_simpl. }
exists (fun a => BuildhProp (P' a)).
exists (f^-1 (inr tt)).1.
split.
{ unshelve eapply BuildEquiv.
{ refine (fun x => x.2.1). }
apply isequiv_biinv.
unshelve esplit;
exists (fun x => (((f^-1 (inl x)).1; (x; idpath)))).
- intros [a [y p]]; cbn.
eapply path_sigma with p^.
apply path_ishprop.
- intros x; cbn.
reflexivity. }
{ intros a.
unfold P'.
apply path_iff_hprop.
- intros Ha.
pose (y := f (a;Ha)).
assert (Hy : y = f (a; Ha)) by reflexivity.
destruct y as [y | []].
+ refine (tr (inl _)).
exists y.
rewrite Hy.
by rewrite eissect.
+ refine (tr (inr (tr _))).
rewrite Hy.
by rewrite eissect.
- intros Hstuff.
strip_truncations.
destruct Hstuff as [[y Hy] | Ha].
+ rewrite Hy.
apply (f^-1 (inl y)).2.
+ strip_truncations.
rewrite Ha.
apply (f^-1 (inr tt)).2. }
Defined.
End split.
Arguments Bfin {_} _.
Arguments split {_} {_} _ _ _.
Section Bfin_no_singletons.
Definition S1toSig (x : S1) : {x : S1 & merely(x = base)}.
Proof.
exists x.
@ -272,9 +275,7 @@ Section Bfin_not_set.
* apply path_ishprop.
Defined.
Context `{Univalence}.
Theorem no_singleton (Hsing : Bfin {|base|}) : Empty.
Theorem no_singleton `{Univalence} (Hsing : Bfin {|base|}) : Empty.
Proof.
destruct Hsing as [n equiv].
strip_truncations.
@ -291,9 +292,9 @@ Section Bfin_not_set.
apply (pos_neq_zero H').
- apply set_path2.
Defined.
End Bfin_no_singletons.
End Bfin_not_set.
(* If A has decidable equality, then every Bfin subobject has decidable membership *)
Section dec_membership.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
@ -310,267 +311,166 @@ Section dec_membership.
rewrite p.
apply _.
- intros.
pose (new_el _ P n Hequiv) as b.
destruct b as [b HX'].
destruct (split _ P n Hequiv) as [X' X'equiv]. simpl in HX'.
destruct (split P n Hequiv) as
(P' & b & HP' & HP).
unfold member, sub_membership.
rewrite (HX' a).
pose (IHn X' X'equiv) as IH.
destruct IH as [IH | IH].
rewrite (HP a).
destruct (IHn P' HP') as [IH | IH].
+ left. apply (tr (inl IH)).
+ destruct (dec (a = b)) as [Hab | Hab].
left. apply (tr (inr (tr Hab))).
right. intros α. strip_truncations.
destruct α as [β | γ]; [ | strip_truncations]; contradiction.
destruct α as [? | ?]; [ | strip_truncations]; contradiction.
Defined.
End dec_membership.
Section cowd.
Section bfin_kfin.
Variable (A : Type).
Context `{Univalence}.
Definition bfin_to_kfin : forall (P : Sub A), Bfin P -> Kf_sub _ P.
Proof.
intros P [n f].
strip_truncations.
revert f. revert P.
induction n; intros P f.
- exists .
apply path_forall; intro a; simpl.
apply path_iff_hprop; [ | contradiction ].
intros p.
apply (f (a;p)).
- destruct (split P n f) as
(P' & b & HP' & HP).
destruct (IHn P' HP') as [Y HY].
exists (Y {|b|}).
apply path_forall; intro a. simpl.
rewrite <- HY.
apply HP.
Defined.
End bfin_kfin.
Section kfin_bfin.
Variable (A : Type).
Context `{DecidablePaths A} `{Univalence}.
Definition cow := { X : Sub A | Bfin X}.
Definition empty_cow : cow.
Proof.
exists empty. apply empty_finite.
Defined.
Definition add_cow : forall a : A, cow -> cow.
Proof.
intros a [X PX].
exists (fun z => lor (X z) (merely (z = a))).
destruct (dec (a X)) as [Ha | Ha];
destruct PX as [n PX];
strip_truncations.
- (* a ∈ X *)
exists n. apply tr.
transitivity ({a : A & a X}); [ | apply PX ].
apply equiv_functor_sigma_id.
intro a'. eapply equiv_iff_hprop_uncurried ; split; cbn.
+ intros Ha'. strip_truncations.
destruct Ha' as [HXa' | Haa'].
* assumption.
* strip_truncations. rewrite Haa'. assumption.
+ intros HXa'. apply tr.
left. assumption.
- (* a ∉ X *)
exists (S n). apply tr.
destruct PX as [f [g Hfg Hgf adj]].
unshelve esplit.
+ intros [a' Ha']. cbn in Ha'.
destruct (dec (a' = a)) as [Haa' | Haa'].
* right. apply tt.
* assert (X a') as HXa'.
{ strip_truncations.
destruct Ha' as [Ha' | Ha']; [ assumption | ].
strip_truncations. by (contradiction (Haa' Ha')). }
apply (inl (f (a';HXa'))).
+ apply isequiv_biinv; simpl.
unshelve esplit; simpl.
* unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'. apply tr.
by left.
- exists a. apply (tr (inr (tr idpath))). }
simpl. intros [a' Ha'].
strip_truncations.
destruct Ha' as [HXa' | Haa']; simpl;
destruct (dec (a' = a)); simpl.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. done.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
* unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'. apply tr.
by left.
- exists a. apply (tr (inr (tr idpath))). }
simpl. intros [M | [] ].
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
{ destruct (g M) as [a' Ha']. rewrite Haa' in Ha'. by contradiction. }
{ f_ap. }
** destruct (dec (a = a)); try by contradiction.
reflexivity.
Defined.
Theorem cowy
(P : cow -> hProp)
(doge : P empty_cow)
(koeientaart : forall a c, P c -> P (add_cow a c))
:
forall X : cow, P X.
Proof.
intros [X [n FX]]. strip_truncations.
revert X FX.
induction n; intros X FX.
- pose (HX_emp:= X_empty _ X FX).
assert ((X; Build_Finite _ 0 (tr FX)) = empty_cow) as HX.
{ apply path_sigma' with HX_emp. apply path_ishprop. }
rewrite HX. assumption.
- pose (a' := new_el _ X n FX).
destruct a' as [a' Ha'].
destruct (split _ X n FX) as [X' FX'].
pose (X'cow := (X'; Build_Finite _ n (tr FX')) : cow).
assert ((X; Build_Finite _ (n.+1) (tr FX)) = add_cow a' X'cow) as .
{ simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
apply path_forall. intros a.
unfold X'cow.
specialize (Ha' a). rewrite Ha'. simpl. reflexivity. }
rewrite .
apply koeientaart.
apply IHn.
Defined.
Definition bfin_to_kfin : forall (X : Sub A), Bfin X -> Kf_sub _ X.
Proof.
intros X BFinX.
unfold Bfin in BFinX.
destruct BFinX as [n iso].
strip_truncations.
revert iso ; revert X.
induction n ; unfold Kf_sub, Kf_sub_intern.
- intros.
exists .
apply path_forall.
intro z.
simpl in *.
apply path_iff_hprop ; try contradiction.
destruct iso as [f f_equiv].
apply (fun Xz => f(z;Xz)).
- intros.
simpl in *.
destruct (new_el _ X n iso) as [a HXX'].
destruct (split _ X n iso) as [X' X'equiv].
destruct (IHn X' X'equiv) as [Y HY].
exists (Y {|a|}).
unfold map in *.
apply path_forall.
intro z.
rewrite union_isIn.
rewrite <- (ap (fun h => h z) HY).
rewrite HXX'.
cbn.
reflexivity.
Defined.
Lemma kfin_is_bfin : @closedUnion A Bfin.
Lemma bfin_union : @closedUnion A Bfin.
Proof.
intros X Y HX HY.
pose (Xcow := (X; HX) : cow).
pose (Ycow := (Y; HY) : cow).
simple refine (cowy (fun C => Bfin (C.1 Y)) _ _ Xcow); simpl.
- assert ((fun a => Trunc (-1) (Empty + Y a)) = (fun a => Y a)) as Help.
{ apply path_forall. intros z; simpl.
apply path_iff_ishprop.
+ intros; strip_truncations; auto.
destruct X0; auto. destruct e.
+ intros ?. apply tr. right; assumption.
(* TODO FIX THIS with sum_empty_l *)
}
rewrite Help. apply HY.
- intros a [X' HX'] [n FX'Y]. strip_truncations.
destruct (dec(a X')) as [HaX' | HaX'].
* exists n. apply tr.
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
apply equiv_functor_sigma_id. intro a'.
apply equiv_iff_hprop.
{ intros Q. strip_truncations.
destruct Q as [Q | Q].
- strip_truncations.
apply tr. left.
destruct Q ; auto.
strip_truncations. rewrite t; assumption.
- apply (tr (inr Q)). }
{ intros Q. strip_truncations.
destruct Q as [Q | Q]; apply tr.
- left. apply tr. left. done.
- right. done. }
* destruct (dec (a Y)) as [HaY | HaY ].
** exists n. apply tr.
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
apply equiv_functor_sigma_id. intro a'.
apply equiv_iff_hprop.
{ intros Q. strip_truncations.
destruct Q as [Q | Q].
- strip_truncations.
apply tr.
destruct Q.
left. auto.
right. strip_truncations. rewrite t; assumption.
- apply (tr (inr Q)). }
{ intros Q. strip_truncations.
destruct Q as [Q | Q]; apply tr.
- left. apply tr. left. done.
- right. done. }
** exists (n.+1). apply tr.
destruct FX'Y as [f [g Hfg Hgf adj]].
unshelve esplit.
{ intros [a' Ha']. cbn in Ha'.
destruct (dec (BuildhProp (a' = a))) as [Ha'a | Ha'a].
- right. apply tt.
- left. refine (f (a';_)).
destruct HX as [n fX].
strip_truncations.
revert fX. revert X.
induction n; intros X fX.
- destruct HY as [m fY]. strip_truncations.
exists m. apply tr.
transitivity {a : A & a Y}; [ | assumption ].
apply equiv_functor_sigma_id.
intros a.
apply equiv_iff_hprop.
* intros Ha. strip_truncations.
destruct Ha as [Ha | Ha]; [ | apply Ha ].
contradiction (fX (a;Ha)).
* intros Ha. apply tr. by right.
- destruct (split X n fX) as
(X' & b & HX' & HX).
assert (Bfin X') by (eexists; apply (tr HX')).
destruct (dec (b X')) as [HX'b | HX'b].
+ cut (X Y = X' Y).
{ intros HXY. rewrite HXY.
by apply IHn. }
apply path_forall. intro a.
unfold union, sub_union, lattice.max_fun.
apply path_iff_hprop.
* intros Ha.
strip_truncations.
destruct Ha as [HXa | HYa]; [ | apply tr; by right ].
rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab];
[ | strip_truncations ]; apply tr; left.
** done.
** rewrite Hab. apply HX'b.
* intros Ha.
strip_truncations. apply tr.
destruct Ha as [HXa | HYa]; [ left | by right ].
rewrite HX. apply (tr (inl HXa)).
+ (* b ∉ X' *)
destruct (IHn X' HX') as [n' fw].
strip_truncations.
destruct (dec (b Y)) as [HYb | HYb].
{ exists n'. apply tr.
transitivity {a : A & a X' Y}; [ | apply fw ].
apply equiv_functor_sigma_id. intro a.
apply equiv_iff_hprop; cbn; simple refine (Trunc_rec _).
{ intros [HXa | HYa].
- rewrite HX in HXa.
strip_truncations.
destruct Ha' as [Ha' | Ha'].
+ strip_truncations.
destruct Ha' as [Ha' | Ha'].
* apply (tr (inl Ha')).
* strip_truncations. contradiction.
+ apply (tr (inr Ha')). }
{ apply isequiv_biinv; simpl.
unshelve esplit; simpl.
- unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'.
strip_truncations; apply tr.
destruct Ha' as [Ha' | Ha'].
+ left. apply (tr (inl Ha')).
+ right. done.
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
{ intros [a' Ha']; simpl.
strip_truncations.
destruct Ha' as [HXa' | Haa']; simpl;
destruct (dec (a' = a)); simpl.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. done. }
- unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- (* destruct (g M) as [a' Ha']. *)
exists (g M).1.
simple refine (Trunc_rec _ (g M).2).
intros Ha'.
apply tr.
(* strip_truncations; apply tr. *)
destruct Ha' as [Ha' | Ha'].
+ left. apply (tr (inl Ha')).
+ right. done.
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
simpl. intros [M | [] ].
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
{ destruct (g M) as [a' Ha']. simpl in Haa'.
strip_truncations.
rewrite Haa' in Ha'. destruct Ha'; by contradiction. }
{ f_ap. transitivity (f (g M)); [ | apply Hfg].
f_ap. apply path_sigma' with idpath.
apply path_ishprop. }
** destruct (dec (a = a)); try by contradiction.
reflexivity. }
destruct HXa as [HX'a | Hab]; apply tr.
* by left.
* right. strip_truncations.
rewrite Hab. apply HYb.
- apply tr. by right. }
{ intros [HX'a | HYa]; apply tr.
* left. rewrite HX.
apply (tr (inl HX'a)).
* by right. } }
{ exists (n'.+1).
apply tr.
unshelve eapply BuildEquiv.
{ intros [a Ha]. cbn in Ha.
destruct (dec (BuildhProp (a = b))) as [Hab | Hab].
- right. apply tt.
- left. refine (fw (a;_)).
strip_truncations. apply tr.
destruct Ha as [HXa | HYa].
+ left. rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab']; [apply HX'a |].
strip_truncations. contradiction.
+ right. apply HYa. }
{ apply isequiv_biinv.
unshelve esplit; cbn.
- unshelve eexists.
+ intros [m | []].
* destruct (fw^-1 m) as [a Ha].
exists a.
strip_truncations. apply tr.
destruct Ha as [HX'a | HYa]; [ left | by right ].
rewrite HX.
apply (tr (inl HX'a)).
* exists b.
rewrite HX.
apply (tr (inl (tr (inr (tr idpath))))).
+ intros [a Ha]; cbn.
strip_truncations.
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
destruct (H a b); cbn.
* apply p^.
* rewrite eissect; cbn.
reflexivity.
- unshelve eexists. (* TODO: Duplication!! *)
+ intros [m | []].
* exists (fw^-1 m).1.
simple refine (Trunc_rec _ (fw^-1 m).2).
intros [HX'a | HYa]; apply tr; [ left | by right ].
rewrite HX.
apply (tr (inl HX'a)).
* exists b.
rewrite HX.
apply (tr (inl (tr (inr (tr idpath))))).
+ intros [m | []]; cbn.
destruct (dec (_ = b)) as [Hb | Hb]; cbn.
{ destruct (fw^-1 m) as [a Ha]. simpl in Hb.
simple refine (Trunc_rec _ Ha). clear Ha.
rewrite Hb.
intros [HX'b2 | HYb2]; contradiction. }
{ f_ap. transitivity (fw (fw^-1 m)).
- f_ap.
apply path_sigma' with idpath.
apply path_ishprop.
- apply eisretr. }
destruct (dec (b = b)); [ reflexivity | contradiction ]. } }
Defined.
End cowd.
Section Kf_to_Bf.
Context `{Univalence}.
Definition FSet_to_Bfin (A : Type) `{DecidablePaths A} : forall (X : FSet A), Bfin (map X).
Definition FSet_to_Bfin : forall (X : FSet A), Bfin (map X).
Proof.
hinduction; try (intros; apply path_ishprop).
- exists 0. apply tr. simpl.
@ -589,25 +489,25 @@ Section Kf_to_Bf.
* exists (fun _ => (a; tr(idpath))).
intros []. reflexivity.
- intros Y1 Y2 HY1 HY2.
apply kfin_is_bfin; auto.
apply bfin_union; auto.
Defined.
Instance Kf_to_Bf (X : Type) (Hfin : Kf X) `{DecidablePaths X} : Finite X.
Proof.
apply Kf_unfold in Hfin.
destruct Hfin as [Y HY].
pose (X' := FSet_to_Bfin _ Y).
unfold Bfin in X'.
simple refine (finite_equiv' _ _ X').
unshelve esplit.
- intros [a ?]. apply a.
- apply isequiv_biinv. split.
* exists (fun a => (a;HY a)).
intros [b Hb].
apply path_sigma' with idpath.
apply path_ishprop.
* exists (fun a => (a;HY a)).
intros b. reflexivity.
Defined.
End kfin_bfin.
End Kf_to_Bf.
Instance Kf_to_Bf (X : Type) `{Univalence} `{DecidablePaths X} (Hfin : Kf X) : Finite X.
Proof.
apply Kf_unfold in Hfin.
destruct Hfin as [Y HY].
pose (X' := FSet_to_Bfin _ Y).
unfold Bfin in X'.
simple refine (finite_equiv' _ _ X').
unshelve esplit.
- intros [a ?]. apply a.
- apply isequiv_biinv. split.
* exists (fun a => (a;HY a)).
intros [b Hb].
apply path_sigma' with idpath.
apply path_ishprop.
* exists (fun a => (a;HY a)).
intros b. reflexivity.
Defined.

View File

@ -63,7 +63,7 @@ Section k_fin_lemoo_projective.
Global Instance kuratowski_projective_oo (X : Type) (Hfin : Kf X) : IsProjective X.
Proof.
assert (Finite X).
{ apply Kf_to_Bf; auto.
{ eapply Kf_to_Bf; auto.
intros pp qq. apply LEMoo. }
apply _.
Defined.
@ -78,7 +78,7 @@ Section k_fin_lem_projective.
Global Instance kuratowski_projective (Hfin : Kf X) : IsProjective X.
Proof.
assert (Finite X).
{ apply Kf_to_Bf; auto.
{ eapply Kf_to_Bf; auto.
intros pp qq. apply LEM. apply _. }
apply _.
Defined.