Get rid of cow induction for the proof of `closedUnion Bfin`

This commit is contained in:
Dan Frumin 2017-08-24 11:35:58 +02:00 committed by Dan Frumin
parent e1a8220ba0
commit eef533e345
1 changed files with 113 additions and 103 deletions

View File

@ -156,7 +156,7 @@ Section finite_hott.
(Xequiv : {a : A & P a } <~> Fin n + Unit).
Definition split : exists P' : Sub A, exists b : A,
({a : A & P' a} <~> Fin n) * (forall x, P x = P' x merely (x = b)).
({a : A & P' a} <~> Fin n) * (forall x, P x = (P' x merely (x = b))).
Proof.
destruct Xequiv as [f [g fg gf adj]].
unfold Sect in *.
@ -369,109 +369,119 @@ Section cowd.
Lemma kfin_is_bfin : @closedUnion A Bfin.
Proof.
intros X Y HX HY.
pose (Xcow := (X; HX) : cow).
pose (Ycow := (Y; HY) : cow).
simple refine (cowy (fun C => Bfin (C.1 Y)) _ _ Xcow); simpl.
- assert ((fun a => Trunc (-1) (Empty + Y a)) = (fun a => Y a)) as Help.
{ apply path_forall. intros z; simpl.
apply path_iff_ishprop.
+ intros; strip_truncations; auto.
destruct X0; auto. destruct e.
+ intros ?. apply tr. right; assumption.
(* TODO FIX THIS with sum_empty_l *)
}
rewrite Help. apply HY.
- intros a [X' HX'] [n FX'Y]. strip_truncations.
destruct (dec(a X')) as [HaX' | HaX'].
* exists n. apply tr.
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
apply equiv_functor_sigma_id. intro a'.
apply equiv_iff_hprop.
{ intros Q. strip_truncations.
destruct Q as [Q | Q].
- strip_truncations.
apply tr. left.
destruct Q ; auto.
strip_truncations. rewrite t; assumption.
- apply (tr (inr Q)). }
{ intros Q. strip_truncations.
destruct Q as [Q | Q]; apply tr.
- left. apply tr. left. done.
- right. done. }
* destruct (dec (a Y)) as [HaY | HaY ].
** exists n. apply tr.
transitivity ({a : A & Trunc (-1) (X' a + Y a)}); [| assumption ].
apply equiv_functor_sigma_id. intro a'.
apply equiv_iff_hprop.
{ intros Q. strip_truncations.
destruct Q as [Q | Q].
- strip_truncations.
apply tr.
destruct Q.
left. auto.
right. strip_truncations. rewrite t; assumption.
- apply (tr (inr Q)). }
{ intros Q. strip_truncations.
destruct Q as [Q | Q]; apply tr.
- left. apply tr. left. done.
- right. done. }
** exists (n.+1). apply tr.
destruct FX'Y as [f [g Hfg Hgf adj]].
unshelve esplit.
{ intros [a' Ha']. cbn in Ha'.
destruct (dec (BuildhProp (a' = a))) as [Ha'a | Ha'a].
- right. apply tt.
- left. refine (f (a';_)).
destruct HX as [n fX].
strip_truncations.
revert fX. revert X.
induction n; intros X fX.
- destruct HY as [m fY]. strip_truncations.
exists m. apply tr.
transitivity {a : A & a Y}; [ | assumption ].
apply equiv_functor_sigma_id.
intros a.
apply equiv_iff_hprop.
* intros Ha. strip_truncations.
destruct Ha as [Ha | Ha]; [ | apply Ha ].
contradiction (fX (a;Ha)).
* intros Ha. apply tr. by right.
- destruct (split _ X n fX) as
(X' & b & HX' & HX).
assert (Bfin X') by (eexists; apply (tr HX')).
destruct (dec (b X')) as [HX'b | HX'b].
+ cut (X Y = X' Y).
{ intros HXY. rewrite HXY.
by apply IHn. }
apply path_forall. intro a.
unfold union, sub_union, lattice.max_fun.
apply path_iff_hprop.
* intros Ha.
strip_truncations.
destruct Ha as [HXa | HYa]; [ | apply tr; by right ].
rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab];
[ | strip_truncations ]; apply tr; left.
** done.
** rewrite Hab. apply HX'b.
* intros Ha.
strip_truncations. apply tr.
destruct Ha as [HXa | HYa]; [ left | by right ].
rewrite HX. apply (tr (inl HXa)).
+ (* b ∉ X' *)
destruct (IHn X' HX') as [n' fw].
strip_truncations.
destruct (dec (b Y)) as [HYb | HYb].
{ exists n'. apply tr.
transitivity {a : A & a X' Y}; [ | apply fw ].
apply equiv_functor_sigma_id. intro a.
apply equiv_iff_hprop; cbn; simple refine (Trunc_rec _).
{ intros [HXa | HYa].
- rewrite HX in HXa.
strip_truncations.
destruct Ha' as [Ha' | Ha'].
+ strip_truncations.
destruct Ha' as [Ha' | Ha'].
* apply (tr (inl Ha')).
* strip_truncations. contradiction.
+ apply (tr (inr Ha')). }
{ apply isequiv_biinv; simpl.
unshelve esplit; simpl.
- unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- destruct (g M) as [a' Ha'].
exists a'.
strip_truncations; apply tr.
destruct Ha' as [Ha' | Ha'].
+ left. apply (tr (inl Ha')).
+ right. done.
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
{ intros [a' Ha']; simpl.
strip_truncations.
destruct Ha' as [HXa' | Haa']; simpl;
destruct (dec (a' = a)); simpl.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. apply path_sigma' with idpath. apply path_ishprop.
** apply path_sigma' with p^. apply path_ishprop.
** rewrite Hgf; cbn. done. }
- unfold Sect; simpl.
simple refine (_;_).
{ destruct 1 as [M | ?].
- (* destruct (g M) as [a' Ha']. *)
exists (g M).1.
simple refine (Trunc_rec _ (g M).2).
intros Ha'.
apply tr.
(* strip_truncations; apply tr. *)
destruct Ha' as [Ha' | Ha'].
+ left. apply (tr (inl Ha')).
+ right. done.
- exists a. apply (tr (inl (tr (inr (tr idpath))))). }
simpl. intros [M | [] ].
** destruct (dec (_ = a)) as [Haa' | Haa']; simpl.
{ destruct (g M) as [a' Ha']. simpl in Haa'.
strip_truncations.
rewrite Haa' in Ha'. destruct Ha'; by contradiction. }
{ f_ap. transitivity (f (g M)); [ | apply Hfg].
f_ap. apply path_sigma' with idpath.
apply path_ishprop. }
** destruct (dec (a = a)); try by contradiction.
reflexivity. }
destruct HXa as [HX'a | Hab]; apply tr.
* by left.
* right. strip_truncations.
rewrite Hab. apply HYb.
- apply tr. by right. }
{ intros [HX'a | HYa]; apply tr.
* left. rewrite HX.
apply (tr (inl HX'a)).
* by right. } }
{ exists (n'.+1).
apply tr.
unshelve eapply BuildEquiv.
{ intros [a Ha]. cbn in Ha.
destruct (dec (BuildhProp (a = b))) as [Hab | Hab].
- right. apply tt.
- left. refine (fw (a;_)).
strip_truncations. apply tr.
destruct Ha as [HXa | HYa].
+ left. rewrite HX in HXa.
strip_truncations.
destruct HXa as [HX'a | Hab']; [apply HX'a |].
strip_truncations. contradiction.
+ right. apply HYa. }
{ apply isequiv_biinv.
unshelve esplit; cbn.
- unshelve eexists.
+ intros [m | []].
* destruct (fw^-1 m) as [a Ha].
exists a.
strip_truncations. apply tr.
destruct Ha as [HX'a | HYa]; [ left | by right ].
rewrite HX.
apply (tr (inl HX'a)).
* exists b.
rewrite HX.
apply (tr (inl (tr (inr (tr idpath))))).
+ intros [a Ha]; cbn.
strip_truncations.
simple refine (path_sigma' _ _ _); [ | apply path_ishprop ].
destruct (H a b); cbn.
* apply p^.
* rewrite eissect; cbn.
reflexivity.
- unshelve eexists. (* TODO: Duplication!! *)
+ intros [m | []].
* exists (fw^-1 m).1.
simple refine (Trunc_rec _ (fw^-1 m).2).
intros [HX'a | HYa]; apply tr; [ left | by right ].
rewrite HX.
apply (tr (inl HX'a)).
* exists b.
rewrite HX.
apply (tr (inl (tr (inr (tr idpath))))).
+ intros [m | []]; cbn.
destruct (dec (_ = b)) as [Hb | Hb]; cbn.
{ destruct (fw^-1 m) as [a Ha]. simpl in Hb.
simple refine (Trunc_rec _ Ha). clear Ha.
rewrite Hb.
intros [HX'b2 | HYb2]; contradiction. }
{ f_ap. transitivity (fw (fw^-1 m)).
- f_ap.
apply path_sigma' with idpath.
apply path_ishprop.
- apply eisretr. }
destruct (dec (b = b)); [ reflexivity | contradiction ]. } }
Defined.
End cowd.