mirror of https://github.com/nmvdw/HITs-Examples
Every Bishop-finite set is Kuratowski-finite
This commit is contained in:
parent
99dfd73b5a
commit
809382ba13
|
@ -1,5 +1,5 @@
|
|||
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
|
||||
Require Import HoTT.
|
||||
Require Import HoTT HitTactics.
|
||||
Require Import Sub notation variations.k_finite.
|
||||
Require Import fsets.properties.
|
||||
|
||||
|
@ -517,4 +517,50 @@ Section cowd.
|
|||
** destruct (dec (a = a)); try by contradiction.
|
||||
reflexivity. }
|
||||
Defined.
|
||||
|
||||
End cowd.
|
||||
|
||||
Section Kf_to_Bf.
|
||||
Context `{Univalence}.
|
||||
|
||||
Definition FSet_to_Bfin (A : Type) `{DecidablePaths A} : forall (X : FSet A), Bfin (map X).
|
||||
Proof.
|
||||
hinduction; try (intros; apply path_ishprop).
|
||||
- exists 0. apply tr. simpl.
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
destruct 1 as [? []].
|
||||
- intros a.
|
||||
exists 1. apply tr. simpl.
|
||||
transitivity Unit; [ | symmetry; apply sum_empty_l ].
|
||||
unshelve esplit.
|
||||
+ exact (fun _ => tt).
|
||||
+ apply isequiv_biinv. split.
|
||||
* exists (fun _ => (a; tr(idpath))).
|
||||
intros [b Hb]. strip_truncations.
|
||||
apply path_sigma' with Hb^.
|
||||
apply path_ishprop.
|
||||
* exists (fun _ => (a; tr(idpath))).
|
||||
intros []. reflexivity.
|
||||
- intros Y1 Y2 HY1 HY2.
|
||||
apply kfin_is_bfin; auto.
|
||||
Defined.
|
||||
|
||||
Instance Kf_to_Bf (X : Type) (Hfin : Kf X) `{DecidablePaths X} : Finite X.
|
||||
Proof.
|
||||
apply Kf_unfold in Hfin.
|
||||
destruct Hfin as [Y HY].
|
||||
pose (X' := FSet_to_Bfin _ Y).
|
||||
unfold Bfin in X'.
|
||||
simple refine (finite_equiv' _ _ X').
|
||||
unshelve esplit.
|
||||
- intros [a ?]. apply a.
|
||||
- apply isequiv_biinv. split.
|
||||
* exists (fun a => (a;HY a)).
|
||||
intros [b Hb].
|
||||
apply path_sigma' with idpath.
|
||||
apply path_ishprop.
|
||||
* exists (fun a => (a;HY a)).
|
||||
intros b. reflexivity.
|
||||
Defined.
|
||||
|
||||
End Kf_to_Bf.
|
||||
|
|
Loading…
Reference in New Issue