Get a quotient from an implementation

This commit is contained in:
Dan Frumin 2017-08-08 17:06:53 +02:00
parent 3cda0d9bf2
commit 80dabe3162
2 changed files with 236 additions and 39 deletions

View File

@ -5,14 +5,18 @@ Section interface.
Context `{Univalence}.
Variable (T : Type -> Type)
(f : forall A, T A -> FSet A).
Context `{hasMembership T, hasEmpty T, hasSingleton T, hasUnion T, hasComprehension T}.
Context `{forall A, hasMembership (T A) A
, forall A, hasEmpty (T A)
, forall A, hasSingleton (T A) A
, forall A, hasUnion (T A)
, forall A, hasComprehension (T A) A}.
Class sets :=
{
f_empty : forall A, f A empty = ;
f_empty : forall A, f A = ;
f_singleton : forall A a, f A (singleton a) = {|a|};
f_union : forall A X Y, f A (union X Y) = (f A X) (f A Y);
f_filter : forall A ϕ X, f A (filter ϕ X) = comprehension ϕ (f A X);
f_filter : forall A φ X, f A (filter φ X) = {| f A X & φ |};
f_member : forall A a X, member a X = a (f A X)
}.
End interface.
@ -30,26 +34,26 @@ Section properties.
Ltac reduce :=
intros ;
repeat (rewrite (f_empty _ _)
|| rewrite ?(f_singleton _ _)
|| rewrite ?(f_union _ _)
|| rewrite ?(f_filter _ _)
|| rewrite ?(f_member _ _)).
repeat (rewrite (f_empty T _)
|| rewrite (f_singleton T _)
|| rewrite (f_union T _)
|| rewrite (f_filter T _)
|| rewrite (f_member T _)).
Definition empty_isIn : forall (A : Type) (a : A),
member a empty = False_hp.
a = False_hp.
Proof.
by reduce.
Defined.
Definition singleton_isIn : forall (A : Type) (a b : A),
member a (singleton b) = merely (a = b).
a {|b|} = merely (a = b).
Proof.
by reduce.
Defined.
Definition union_isIn : forall (A : Type) (a : A) (X Y : T A),
member a (union X Y) = lor (member a X) (member a Y).
a (X Y) = lor (a X) (a Y).
Proof.
by reduce.
Defined.
@ -90,10 +94,202 @@ Section properties.
Defined.
Lemma union_comm : forall A (X Y : T A),
set_eq A (union X Y) (union Y X).
set_eq A (X Y) (Y X).
Proof.
simplify.
apply comm.
Defined.
Lemma union_assoc : forall A (X Y Z : T A),
set_eq A ((X Y) Z) (X (Y Z)) .
Proof.
simplify.
symmetry.
apply assoc.
Defined.
Lemma union_idem : forall A (X : T A),
set_eq A (X X) X.
Proof.
simplify.
apply union_idem.
Defined.
Lemma union_neutral : forall A (X : T A),
set_eq A ( X) X.
Proof.
simplify.
apply nl.
Defined.
End properties.
Section quot.
Variable (T : Type -> Type).
Variable (f : forall {A : Type}, T A -> FSet A).
Context `{sets T f}.
Definition R A : relation (T A) := set_eq T f A.
Definition View A : Type := quotient (R A).
Arguments f {_} _.
Instance R_refl A : Reflexive (R A).
Proof. intro. reflexivity. Defined.
Instance R_sym A : Symmetric (R A).
Proof. intros a b Hab. apply (Hab^). Defined.
Instance R_trans A: Transitive (R A).
Proof. intros a b c Hab Hbc. apply (Hab @ Hbc). Defined.
(* Instance quotient_recursion `{A : Type} (Q : relation A) `{is_mere_relation _ Q} : HitRecursion (quotient Q) := *)
(* { *)
(* indTy := _; recTy := _; *)
(* H_inductor := quotient_ind Q; H_recursor := quotient_rec Q *)
(* }. *)
Instance View_recursion A : HitRecursion (View A) :=
{
indTy := _; recTy := forall (P : Type) (HP: IsHSet P) (u : T A -> P), (forall x y : T A, set_eq T (@f) A x y -> u x = u y) -> View A -> P;
H_inductor := quotient_ind (R A); H_recursor := @quotient_rec _ (R A) _
}.
Arguments set_eq {_} _ {_} _ _.
Definition View_rec2 {A} (P : Type) (HP : IsHSet P) (u : T A -> T A -> P) :
(forall (x x' : T A), set_eq (@f) x x' -> forall (y y' : T A), set_eq (@f) y y' -> u x y = u x' y') ->
forall (x y : View A), P.
Proof.
intros Hresp.
assert (resp1 : forall x y y', set_eq (@f) y y' -> u x y = u x y').
{ intros x y y'.
apply Hresp.
reflexivity. }
assert (resp2 : forall x x' y, set_eq (@f) x x' -> u x y = u x' y).
{ intros x x' y Hxx'.
apply Hresp. apply Hxx'.
reflexivity. }
hrecursion.
- intros a.
hrecursion.
+ intros b.
apply (u a b).
+ intros b b' Hbb'. simpl.
by apply resp1.
- intros a a' Haa'. simpl.
apply path_forall. red.
hinduction.
+ intros b. apply resp2. apply Haa'.
+ intros; apply HP.
Defined.
Instance View_max A : maximum (View A).
Proof.
compute-[View].
simple refine (View_rec2 _ _ _ _).
- intros a b. apply class_of. apply (union a b).
- intros x x' Hxx' y y' Hyy'. simpl.
apply related_classes_eq.
unfold R in *.
eapply well_defined_union; eauto.
Defined.
Ltac reduce :=
intros ;
repeat (rewrite (f_empty T _)
|| rewrite (f_singleton T _)
|| rewrite (f_union T _)
|| rewrite (f_filter T _)
|| rewrite (f_member T _)).
Instance View_member A: hasMembership (View A) A.
Proof.
intros a.
hrecursion.
- apply (member a).
- intros X Y HXY.
reduce.
unfold R, set_eq in HXY. rewrite HXY.
reflexivity.
Defined.
Instance View_empty A: hasEmpty (View A).
Proof.
apply class_of.
apply .
Defined.
Instance View_singleton A: hasSingleton (View A) A.
Proof.
intros a.
apply class_of.
apply {|a|}.
Defined.
Instance View_union A: hasUnion (View A).
Proof.
intros X Y.
apply (max_L X Y).
Defined.
Instance View_comprehension A: hasComprehension (View A) A.
Proof.
intros ϕ.
hrecursion.
- intros X.
apply class_of.
apply (filter ϕ X).
- intros X X' HXX'. simpl.
apply related_classes_eq.
eapply well_defined_filter; eauto.
Defined.
Instance View_max_comm A: Commutative (@max_L (View A) _).
Proof.
unfold Commutative.
hinduction.
- intros X.
hinduction.
+ intros Y. cbn.
apply related_classes_eq.
eapply union_comm; eauto.
+ intros. apply set_path2.
- intros. apply path_forall; intro. apply set_path2.
Defined.
Ltac buggeroff := intros;
(repeat (apply path_forall; intro)); apply set_path2.
Instance View_max_assoc A: Associative (@max_L (View A) _).
Proof.
unfold Associative.
hinduction; try buggeroff.
intros X.
hinduction; try buggeroff.
intros Y.
hinduction; try buggeroff.
intros Z. cbn.
apply related_classes_eq.
eapply union_assoc; eauto.
Defined.
Instance View_max_idem A: Idempotent (@max_L (View A) _).
Proof.
unfold Idempotent.
hinduction; try buggeroff.
intros X; cbn.
apply related_classes_eq.
eapply union_idem; eauto.
Defined.
Instance View_max_neut A: NeutralL (@max_L (View A) _) .
Proof.
unfold NeutralL.
hinduction; try buggeroff.
intros X; cbn.
apply related_classes_eq.
eapply union_neutral; eauto.
Defined.
End quot.

View File

@ -11,38 +11,39 @@ Definition hrecursion (H : Type) {HR : HitRecursion H} : @recTy H HR :=
Definition hinduction (H : Type) {HR : HitRecursion H} : @indTy H HR :=
@H_inductor H HR.
(* TODO: use information from recTy instead of [typeof hrec]? *)
Ltac hrecursion_ :=
lazymatch goal with
| [ |- ?T -> ?P ] =>
let hrec1 := eval cbv[hrecursion H_recursor] in (hrecursion T) in
let hrec := eval simpl in hrec1 in
match type of hrec with
| ?Q =>
match (eval simpl in Q) with
| forall Y, T -> Y =>
simple refine (hrec P)
| forall Y _, T -> Y =>
simple refine (hrec P _)
| forall Y _ _, T -> Y =>
simple refine (hrec P _ _)
| forall Y _ _ _, T -> Y =>
simple refine (hrec P _ _ _)
| forall Y _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _)
| forall Y _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _)
| forall Y _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _)
| forall Y _ _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _ _)
| forall Y _ _ _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _ _ _)
| forall Y _ _ _ _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _ _ _ _)
| forall Y _ _ _ _ _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _ _ _ _ _)
| _ => fail "Cannot handle the recursion principle (too many parameters?) :("
end
let hrecTy1 := eval cbv[recTy] in (@recTy T _) in
let hrecTy := eval simpl in hrecTy1 in
match hrecTy with
| forall Y, T -> Y =>
simple refine (hrec P)
| forall Y _, T -> Y =>
simple refine (hrec P _)
| forall Y _ _, T -> Y =>
simple refine (hrec P _ _)
| forall Y _ _ _, T -> Y =>
simple refine (hrec P _ _ _)
| forall Y _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _)
| forall Y _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _)
| forall Y _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _)
| forall Y _ _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _ _)
| forall Y _ _ _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _ _ _)
| forall Y _ _ _ _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _ _ _ _)
| forall Y _ _ _ _ _ _ _ _ _ _, T -> Y =>
simple refine (hrec P _ _ _ _ _ _ _ _ _ _)
| _ => fail "Cannot handle the recursion principle (too many parameters?) :("
end
| [ |- forall (target:?T), ?P] =>
let hind1 := eval cbv[hinduction H_inductor] in (hinduction T) in