Added proof that Z' is HSet.

This commit is contained in:
Niels 2017-08-04 20:54:53 +02:00
parent efec2e88f8
commit 86b4f80aa5
1 changed files with 6 additions and 7 deletions

View File

@ -650,17 +650,16 @@ Section Isomorphic.
apply concat_1p. apply concat_1p.
Defined. Defined.
Definition biinv_Z'_to_Int : BiInv Z'_to_Int := Definition biinv_Int_to_Z' : BiInv Int_to_Z' :=
((Int_to_Z' ; Z'_to_Int_to_Z'), (Int_to_Z' ; Int_to_Z'_to_Int)). ((Z'_to_Int ; Int_to_Z'_to_Int), (Z'_to_Int ; Z'_to_Int_to_Z')).
Definition equiv_Z'_to_Int : IsEquiv Z'_to_Int := Instance equiv_Int_to_Z' : IsEquiv Int_to_Z' :=
isequiv_biinv _ biinv_Z'_to_Int. isequiv_biinv _ biinv_Int_to_Z'.
Instance Z'_set : IsHSet Z'. Instance Z'_set : IsHSet Z'.
Proof. Proof.
intros x y p q. apply (trunc_equiv Int Int_to_Z').
Defined
Admitted.
Definition Z_to_Z' : Z -> Z'. Definition Z_to_Z' : Z -> Z'.
Proof. Proof.