mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-03 23:23:51 +01:00 
			
		
		
		
	Merge remote-tracking branch 'origin/bloop' into properties
This commit is contained in:
		@@ -1,6 +1,5 @@
 | 
				
			|||||||
Require Import HoTT HitTactics.
 | 
					Require Import HoTT HitTactics.
 | 
				
			||||||
Require Import definition.
 | 
					Require Import definition.
 | 
				
			||||||
 | 
					 | 
				
			||||||
Section operations.
 | 
					Section operations.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Context {A : Type}.
 | 
					Context {A : Type}.
 | 
				
			||||||
@@ -48,4 +47,22 @@ intros X Y.
 | 
				
			|||||||
apply (comprehension (fun (a : A) => isIn a X) Y).
 | 
					apply (comprehension (fun (a : A) => isIn a X) Y).
 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Definition subset :
 | 
				
			||||||
 | 
						FSet A -> FSet A -> Bool.
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					intros X Y.
 | 
				
			||||||
 | 
					hrecursion X. 
 | 
				
			||||||
 | 
					- exact true.
 | 
				
			||||||
 | 
					- exact (fun a => (a ∈ Y)).
 | 
				
			||||||
 | 
					- exact andb.
 | 
				
			||||||
 | 
					- intros. compute. destruct x; reflexivity.
 | 
				
			||||||
 | 
					- intros x y; compute; destruct x, y; reflexivity. 
 | 
				
			||||||
 | 
					- intros x; compute; destruct x; reflexivity.
 | 
				
			||||||
 | 
					- intros x; compute; destruct x; reflexivity.
 | 
				
			||||||
 | 
					- intros x; cbn; destruct (x ∈ Y); reflexivity.
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Notation "⊆" := subset.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End operations.
 | 
					End operations.
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -1,5 +1,5 @@
 | 
				
			|||||||
Require Import HoTT HitTactics.
 | 
					Require Import HoTT HitTactics.
 | 
				
			||||||
Require Import definition operations.
 | 
					Require Export definition operations.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Section properties.
 | 
					Section properties.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -20,8 +20,7 @@ try (intros ; apply set_path2) ; cbn.
 | 
				
			|||||||
  rewrite P.
 | 
					  rewrite P.
 | 
				
			||||||
  rewrite (comm y x).
 | 
					  rewrite (comm y x).
 | 
				
			||||||
  rewrite <- (assoc x y y).
 | 
					  rewrite <- (assoc x y y).
 | 
				
			||||||
  rewrite Q.
 | 
					  f_ap. 
 | 
				
			||||||
  reflexivity.
 | 
					 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -177,26 +176,29 @@ Defined.
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
 | 
					Theorem intersection_idem : forall (X : FSet A), intersection X X = X.
 | 
				
			||||||
Proof.
 | 
					Proof.
 | 
				
			||||||
hinduction; try (intros; apply set_path2).
 | 
					hinduction; try (intros ; apply set_path2).
 | 
				
			||||||
- reflexivity.
 | 
					- reflexivity.
 | 
				
			||||||
- intro a.
 | 
					- intro a.
 | 
				
			||||||
  destruct (dec (a = a)).
 | 
					  destruct (dec (a = a)).
 | 
				
			||||||
  * reflexivity.
 | 
					  * reflexivity.
 | 
				
			||||||
  * contradiction (n idpath).
 | 
					  * contradiction (n idpath).
 | 
				
			||||||
- intros X Y IHX IHY.
 | 
					- intros X Y IHX IHY.
 | 
				
			||||||
 | 
					  f_ap;
 | 
				
			||||||
  unfold intersection in *.
 | 
					  unfold intersection in *.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  + transitivity (U (comprehension (fun a => isIn a X) X) (comprehension (fun a => isIn a Y) X)).
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					    apply comprehension_or.
 | 
				
			||||||
  rewrite IHX.
 | 
					    rewrite IHX.
 | 
				
			||||||
  rewrite IHY.
 | 
					    rewrite (comm X).    
 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					    apply comprehension_subset.
 | 
				
			||||||
  rewrite (comm X).
 | 
					  + transitivity (U (comprehension (fun a => isIn a X) Y) (comprehension (fun a => isIn a Y) Y)).
 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					    apply comprehension_or.
 | 
				
			||||||
  reflexivity.
 | 
					    rewrite IHY.
 | 
				
			||||||
 | 
					    apply comprehension_subset.
 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
(** assorted lattice laws *)
 | 
					(** assorted lattice laws *)
 | 
				
			||||||
Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A, intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
 | 
					Lemma distributive_La (z : FSet A) (a : A) : forall Y : FSet A, 
 | 
				
			||||||
 | 
					       intersection (U (L a) z) Y = U (intersection (L a) Y) (intersection z Y).
 | 
				
			||||||
Proof.
 | 
					Proof.
 | 
				
			||||||
hinduction; try (intros ; apply set_path2) ; cbn.
 | 
					hinduction; try (intros ; apply set_path2) ; cbn.
 | 
				
			||||||
- symmetry ; apply nl.
 | 
					- symmetry ; apply nl.
 | 
				
			||||||
@@ -265,11 +267,10 @@ hinduction x; try (intros ; apply set_path2) ; cbn.
 | 
				
			|||||||
  cbn.
 | 
					  cbn.
 | 
				
			||||||
  rewrite P.
 | 
					  rewrite P.
 | 
				
			||||||
  rewrite Q.
 | 
					  rewrite Q.
 | 
				
			||||||
  destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ; reflexivity.
 | 
					  destruct (isIn a X1) ; destruct (isIn a X2) ; destruct (isIn a y) ; 
 | 
				
			||||||
 | 
					  reflexivity.
 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Theorem intersection_assoc (X Y Z: FSet A) :
 | 
					Theorem intersection_assoc (X Y Z: FSet A) :
 | 
				
			||||||
    intersection X (intersection Y Z) = intersection (intersection X Y) Z.
 | 
					    intersection X (intersection Y Z) = intersection (intersection X Y) Z.
 | 
				
			||||||
Proof.
 | 
					Proof.
 | 
				
			||||||
@@ -312,14 +313,12 @@ hinduction; try (intros ; apply set_path2).
 | 
				
			|||||||
  * reflexivity.
 | 
					  * reflexivity.
 | 
				
			||||||
  * contradiction (n idpath).
 | 
					  * contradiction (n idpath).
 | 
				
			||||||
- intros X1 X2 P Q.
 | 
					- intros X1 X2 P Q.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  f_ap; (etransitivity; [ apply comprehension_or |]).
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  rewrite P. rewrite (comm X1).
 | 
				
			||||||
  rewrite P.
 | 
					  apply comprehension_subset.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  rewrite Q.
 | 
					  rewrite Q.
 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					  apply comprehension_subset.
 | 
				
			||||||
  rewrite (comm X1).
 | 
					 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					 | 
				
			||||||
  reflexivity.
 | 
					 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
@@ -336,17 +335,22 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
 | 
				
			|||||||
  rewrite p.
 | 
					  rewrite p.
 | 
				
			||||||
  rewrite comprehension_subset.
 | 
					  rewrite comprehension_subset.
 | 
				
			||||||
  reflexivity.
 | 
					  reflexivity.
 | 
				
			||||||
- intros. unfold intersection. (* TODO isIn is simplified too much *)
 | 
					- intros.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  assert (Y = intersection (U (L a) Y) Y) as HY.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  { unfold intersection. symmetry.
 | 
				
			||||||
  (* rewrite intersection_La. *)
 | 
					    transitivity (U (comprehension (fun x => isIn x (L a)) Y) (comprehension (fun x => isIn x Y) Y)).
 | 
				
			||||||
 | 
					    apply comprehension_or.
 | 
				
			||||||
 | 
					    rewrite comprehension_all.
 | 
				
			||||||
 | 
					    apply comprehension_subset. }
 | 
				
			||||||
 | 
					  rewrite <- HY.
 | 
				
			||||||
  admit.
 | 
					  admit.
 | 
				
			||||||
- unfold intersection.
 | 
					- unfold intersection.
 | 
				
			||||||
  cbn.
 | 
					 | 
				
			||||||
  intros Z1 Z2 P Q.
 | 
					  intros Z1 Z2 P Q.
 | 
				
			||||||
  rewrite comprehension_or.
 | 
					  rewrite comprehension_or.
 | 
				
			||||||
  assert (U (U (comprehension (fun a : A => isIn a Z1) X2) (comprehension (fun a : A => isIn a Z2) X2))
 | 
					  assert (U (U (comprehension (fun a : A => isIn a Z1) X2) 
 | 
				
			||||||
    Y = U (U (comprehension (fun a : A => isIn a Z1) X2) (comprehension (fun a : A => isIn a Z2) X2))
 | 
					  	(comprehension (fun a : A => isIn a Z2) X2))
 | 
				
			||||||
 | 
					    Y = U (U (comprehension (fun a : A => isIn a Z1) X2) 
 | 
				
			||||||
 | 
					  (comprehension (fun a : A => isIn a Z2) X2))
 | 
				
			||||||
    (U Y Y)).
 | 
					    (U Y Y)).
 | 
				
			||||||
    rewrite (union_idem Y).
 | 
					    rewrite (union_idem Y).
 | 
				
			||||||
    reflexivity.
 | 
					    reflexivity.
 | 
				
			||||||
@@ -354,20 +358,24 @@ hinduction X1; try (intros ; apply set_path2) ; cbn.
 | 
				
			|||||||
  rewrite <- assoc.
 | 
					  rewrite <- assoc.
 | 
				
			||||||
  rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
 | 
					  rewrite (assoc (comprehension (fun a : A => isIn a Z2) X2)).
 | 
				
			||||||
  rewrite Q.
 | 
					  rewrite Q.
 | 
				
			||||||
  rewrite (comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
 | 
					  cbn.
 | 
				
			||||||
                   (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
 | 
					  rewrite 
 | 
				
			||||||
 | 
					  (comm (U (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)
 | 
				
			||||||
 | 
					           (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) Y).
 | 
				
			||||||
  rewrite assoc.
 | 
					  rewrite assoc.
 | 
				
			||||||
  rewrite P.
 | 
					  rewrite P.
 | 
				
			||||||
  rewrite <- assoc.
 | 
					  rewrite <- assoc. cbn.
 | 
				
			||||||
  rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
 | 
					  rewrite (assoc (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
 | 
				
			||||||
  rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
 | 
					  rewrite (comm (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)).
 | 
				
			||||||
  rewrite <- assoc.
 | 
					  rewrite <- assoc.
 | 
				
			||||||
  rewrite assoc.
 | 
					  rewrite assoc.
 | 
				
			||||||
  enough (C : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) X2)
 | 
					  enough (C : (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) X2)
 | 
				
			||||||
             (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)) = (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) X2)).
 | 
					             (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) X2)) 
 | 
				
			||||||
 | 
					 = (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) X2)).
 | 
				
			||||||
  rewrite C. 
 | 
					  rewrite C. 
 | 
				
			||||||
  enough (D :  (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)
 | 
					  enough (D :  (U (comprehension (fun a : A => (isIn a Z1 || isIn a Y)%Bool) Y)
 | 
				
			||||||
                  (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) = (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) Y)).
 | 
					                  (comprehension (fun a : A => (isIn a Z2 || isIn a Y)%Bool) Y)) 
 | 
				
			||||||
 | 
					 = (comprehension (fun a : A => (isIn a Z1 || isIn a Z2 || isIn a Y)%Bool) Y)).
 | 
				
			||||||
  rewrite D.
 | 
					  rewrite D.
 | 
				
			||||||
  reflexivity.
 | 
					  reflexivity.
 | 
				
			||||||
  * repeat (rewrite comprehension_or).
 | 
					  * repeat (rewrite comprehension_or).
 | 
				
			||||||
@@ -429,10 +437,166 @@ hrecursion X; try (intros ; apply set_path2).
 | 
				
			|||||||
  rewrite <- Q.
 | 
					  rewrite <- Q.
 | 
				
			||||||
Admitted.
 | 
					Admitted.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<<<<<<< HEAD
 | 
				
			||||||
Theorem union_isIn (X Y : FSet A) (a : A) : isIn a (U X Y) = orb (isIn a X) (isIn a Y).
 | 
					Theorem union_isIn (X Y : FSet A) (a : A) : isIn a (U X Y) = orb (isIn a X) (isIn a Y).
 | 
				
			||||||
Proof.
 | 
					Proof.
 | 
				
			||||||
reflexivity.  
 | 
					reflexivity.  
 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
                                                                
 | 
					                                                                
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
 | 
					=======
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					(* Properties about subset relation. *)
 | 
				
			||||||
 | 
					Lemma subset_union `{Funext} (X Y : FSet A) : 
 | 
				
			||||||
 | 
					  subset X Y = true -> U X Y = Y.
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					hinduction X; try (intros; apply path_forall; intro; apply set_path2).
 | 
				
			||||||
 | 
					- intros. apply nl.
 | 
				
			||||||
 | 
					- intros a. hinduction Y;
 | 
				
			||||||
 | 
					  try (intros; apply path_forall; intro; apply set_path2).
 | 
				
			||||||
 | 
					  + intro. contradiction (false_ne_true).
 | 
				
			||||||
 | 
					  + intros. destruct (dec (a = a0)).
 | 
				
			||||||
 | 
					    rewrite p; apply idem.
 | 
				
			||||||
 | 
					    contradiction (false_ne_true).
 | 
				
			||||||
 | 
					  + intros X1 X2 IH1 IH2.
 | 
				
			||||||
 | 
					    intro Ho.
 | 
				
			||||||
 | 
					    destruct (isIn a X1);
 | 
				
			||||||
 | 
					      destruct (isIn a X2).
 | 
				
			||||||
 | 
					    * specialize (IH1 idpath).
 | 
				
			||||||
 | 
					      rewrite assoc. f_ap. 
 | 
				
			||||||
 | 
					    * specialize (IH1 idpath).
 | 
				
			||||||
 | 
					      rewrite assoc. f_ap. 
 | 
				
			||||||
 | 
					    * specialize (IH2 idpath).
 | 
				
			||||||
 | 
					      rewrite (comm X1 X2).
 | 
				
			||||||
 | 
					      rewrite assoc. f_ap. 
 | 
				
			||||||
 | 
					    * contradiction (false_ne_true). 
 | 
				
			||||||
 | 
					- intros X1 X2 IH1 IH2 G. 
 | 
				
			||||||
 | 
					  destruct (subset X1 Y);
 | 
				
			||||||
 | 
					    destruct (subset X2 Y).
 | 
				
			||||||
 | 
					  * specialize (IH1 idpath).    
 | 
				
			||||||
 | 
					    specialize (IH2 idpath).
 | 
				
			||||||
 | 
					    rewrite <- assoc. rewrite IH2. apply IH1. 
 | 
				
			||||||
 | 
					  * contradiction (false_ne_true).
 | 
				
			||||||
 | 
					  * contradiction (false_ne_true).
 | 
				
			||||||
 | 
					  * contradiction (false_ne_true).
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Lemma eq1 (X Y : FSet A) : X = Y <~> (U Y X = X) * (U X Y = Y).
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					  unshelve eapply BuildEquiv.
 | 
				
			||||||
 | 
					  { intro H. rewrite H. split; apply union_idem. }
 | 
				
			||||||
 | 
					  unshelve esplit.
 | 
				
			||||||
 | 
					  { intros [H1 H2]. etransitivity. apply H1^.
 | 
				
			||||||
 | 
					    rewrite comm. apply H2. }
 | 
				
			||||||
 | 
					  intro; apply path_prod; apply set_path2. 
 | 
				
			||||||
 | 
					  all: intro; apply set_path2.  
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Lemma subset_union_l `{Funext} X :
 | 
				
			||||||
 | 
					  forall Y, subset X (U X Y) = true.
 | 
				
			||||||
 | 
					hinduction X;
 | 
				
			||||||
 | 
					  try (intros; apply path_forall; intro; apply set_path2).
 | 
				
			||||||
 | 
					- reflexivity.
 | 
				
			||||||
 | 
					- intros a Y. destruct (dec (a = a)).
 | 
				
			||||||
 | 
					  * reflexivity.
 | 
				
			||||||
 | 
					  * by contradiction n.
 | 
				
			||||||
 | 
					- intros X1 X2 HX1 HX2 Y.
 | 
				
			||||||
 | 
					  enough (subset X1 (U (U X1 X2) Y) = true).
 | 
				
			||||||
 | 
					  enough (subset X2 (U (U X1 X2) Y) = true).
 | 
				
			||||||
 | 
					  rewrite X. rewrite X0. reflexivity.
 | 
				
			||||||
 | 
					  { rewrite (comm X1 X2).
 | 
				
			||||||
 | 
					    rewrite <- (assoc X2 X1 Y).
 | 
				
			||||||
 | 
					    apply (HX2 (U X1 Y)). }
 | 
				
			||||||
 | 
					  { rewrite <- (assoc X1 X2 Y). apply (HX1 (U X2 Y)). }
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Lemma subset_union_equiv `{Funext}
 | 
				
			||||||
 | 
					  : forall X Y : FSet A, subset X Y = true <~> U X Y = Y.
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					  intros X Y.
 | 
				
			||||||
 | 
					  unshelve eapply BuildEquiv.
 | 
				
			||||||
 | 
					  apply subset_union.
 | 
				
			||||||
 | 
					  unshelve esplit.
 | 
				
			||||||
 | 
					  { intros HXY. rewrite <- HXY. clear HXY.
 | 
				
			||||||
 | 
					    apply subset_union_l. }
 | 
				
			||||||
 | 
					  all: intro; apply set_path2.
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Lemma eq_subset `{Funext} (X Y : FSet A) :
 | 
				
			||||||
 | 
					  X = Y <~> ((subset Y X = true) * (subset X Y = true)).
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					  transitivity ((U Y X = X) * (U X Y = Y)).
 | 
				
			||||||
 | 
					  apply eq1.
 | 
				
			||||||
 | 
					  symmetry.
 | 
				
			||||||
 | 
					  eapply equiv_functor_prod'; apply subset_union_equiv.
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Lemma subset_isIn `{FE : Funext} (X Y : FSet A) :
 | 
				
			||||||
 | 
					  (forall (a : A), isIn a X = true -> isIn a Y = true)
 | 
				
			||||||
 | 
					  <-> (subset X Y = true).
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					  split.
 | 
				
			||||||
 | 
					  - hinduction X ; try (intros ; apply path_forall ; intro ; apply set_path2).
 | 
				
			||||||
 | 
					    * intros ; reflexivity.
 | 
				
			||||||
 | 
					    * intros a H. 
 | 
				
			||||||
 | 
					      apply H.
 | 
				
			||||||
 | 
					      destruct (dec (a = a)).
 | 
				
			||||||
 | 
					      + reflexivity.
 | 
				
			||||||
 | 
					      + contradiction (n idpath).
 | 
				
			||||||
 | 
					    * intros X1 X2 H1 H2 H.
 | 
				
			||||||
 | 
					      enough (subset X1 Y = true).
 | 
				
			||||||
 | 
					      rewrite X.
 | 
				
			||||||
 | 
					      enough (subset X2 Y = true).
 | 
				
			||||||
 | 
					      rewrite X0.
 | 
				
			||||||
 | 
					      reflexivity.
 | 
				
			||||||
 | 
					      + apply H2.
 | 
				
			||||||
 | 
					        intros a Ha.
 | 
				
			||||||
 | 
					        apply H.
 | 
				
			||||||
 | 
					        rewrite Ha.
 | 
				
			||||||
 | 
					        destruct (isIn a X1) ; reflexivity.
 | 
				
			||||||
 | 
					      + apply H1.
 | 
				
			||||||
 | 
					        intros a Ha.
 | 
				
			||||||
 | 
					        apply H.
 | 
				
			||||||
 | 
					        rewrite Ha.
 | 
				
			||||||
 | 
					        reflexivity.        
 | 
				
			||||||
 | 
					  - hinduction X .
 | 
				
			||||||
 | 
					    * intros. contradiction (false_ne_true X0).
 | 
				
			||||||
 | 
					    * intros b H a.
 | 
				
			||||||
 | 
					      destruct (dec (a = b)).
 | 
				
			||||||
 | 
					      + intros ; rewrite p ; apply H.
 | 
				
			||||||
 | 
					      + intros X ; contradiction (false_ne_true X).
 | 
				
			||||||
 | 
					        * intros X1 X2.
 | 
				
			||||||
 | 
					          intros IH1 IH2 H1 a H2.
 | 
				
			||||||
 | 
					          destruct (subset X1 Y) ; destruct (subset X2 Y);
 | 
				
			||||||
 | 
					            cbv in H1; try by contradiction false_ne_true.
 | 
				
			||||||
 | 
					          specialize (IH1 idpath a). specialize (IH2 idpath a).
 | 
				
			||||||
 | 
					          destruct (isIn a X1); destruct (isIn a X2);
 | 
				
			||||||
 | 
					            cbv in H2; try by contradiction false_ne_true.
 | 
				
			||||||
 | 
					          by apply IH1.
 | 
				
			||||||
 | 
					          by apply IH1.
 | 
				
			||||||
 | 
					          by apply IH2.
 | 
				
			||||||
 | 
					        * repeat (intro; intros; apply path_forall).
 | 
				
			||||||
 | 
					          intros; intro; intros; apply set_path2.
 | 
				
			||||||
 | 
					        * repeat (intro; intros; apply path_forall).
 | 
				
			||||||
 | 
					          intros; intro; intros; apply set_path2.
 | 
				
			||||||
 | 
					        * repeat (intro; intros; apply path_forall).
 | 
				
			||||||
 | 
					          intros; intro; intros; apply set_path2.
 | 
				
			||||||
 | 
					        * repeat (intro; intros; apply path_forall).
 | 
				
			||||||
 | 
					          intros; intro; intros; apply set_path2.
 | 
				
			||||||
 | 
					        * repeat (intro; intros; apply path_forall);
 | 
				
			||||||
 | 
					          intros; intro; intros; apply set_path2.
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Theorem fset_ext `{Funext} (X Y : FSet A) :
 | 
				
			||||||
 | 
					  X = Y <~> (forall (a : A), isIn a X = isIn a Y).
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					  etransitivity. apply eq_subset.
 | 
				
			||||||
 | 
					  transitivity
 | 
				
			||||||
 | 
					    ((forall a, isIn a Y = true -> isIn a X = true)
 | 
				
			||||||
 | 
					     *(forall a, isIn a X = true -> isIn a Y = true)).
 | 
				
			||||||
 | 
					  - eapply equiv_functor_prod'. admit. admit.
 | 
				
			||||||
 | 
					  - eapply equiv_functor_prod'. 
 | 
				
			||||||
 | 
					Admitted.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
End properties. 
 | 
					End properties. 
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user