mirror of https://github.com/nmvdw/HITs-Examples
Some simplifications in proofs, extra proofs for implementation
This commit is contained in:
parent
d5585f32c6
commit
a0844f6be4
|
@ -62,7 +62,7 @@ Section operations_isIn.
|
|||
Defined.
|
||||
|
||||
(* Union and membership *)
|
||||
Lemma union_isIn (X Y : FSet A) (a : A) :
|
||||
Lemma union_isIn_b (X Y : FSet A) (a : A) :
|
||||
isIn_b a (U X Y) = orb (isIn_b a X) (isIn_b a Y).
|
||||
Proof.
|
||||
unfold isIn_b ; unfold dec.
|
||||
|
@ -70,73 +70,31 @@ Section operations_isIn.
|
|||
destruct (isIn_decidable a X) ; destruct (isIn_decidable a Y) ; reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma intersection_isIn (X Y: FSet A) (a : A) :
|
||||
Lemma comprehension_isIn_b (Y : FSet A) (ϕ : A -> Bool) (a : A) :
|
||||
isIn_b a (comprehension ϕ Y) = andb (isIn_b a Y) (ϕ a).
|
||||
Proof.
|
||||
unfold isIn_b, dec ; simpl.
|
||||
destruct (isIn_decidable a (comprehension ϕ Y)) as [t | t]
|
||||
; destruct (isIn_decidable a Y) as [n | n] ; rewrite comprehension_isIn in t
|
||||
; destruct (ϕ a) ; try reflexivity ; try contradiction.
|
||||
Defined.
|
||||
|
||||
Lemma intersection_isIn_b (X Y: FSet A) (a : A) :
|
||||
isIn_b a (intersection X Y) = andb (isIn_b a X) (isIn_b a Y).
|
||||
Proof.
|
||||
hinduction X; try (intros ; apply set_path2).
|
||||
- reflexivity.
|
||||
- intro b.
|
||||
destruct (dec (a = b)).
|
||||
* rewrite p.
|
||||
destruct (isIn_b b Y) ; symmetry ; eauto with bool_lattice_hints.
|
||||
* destruct (isIn_b b Y) ; destruct (isIn_b a Y) ; symmetry ; eauto with bool_lattice_hints.
|
||||
+ rewrite and_false.
|
||||
symmetry.
|
||||
apply (L_isIn_b_false a b n).
|
||||
+ rewrite and_true.
|
||||
apply (L_isIn_b_false a b n).
|
||||
- intros X1 X2 P Q.
|
||||
rewrite union_isIn ; rewrite union_isIn.
|
||||
rewrite P.
|
||||
rewrite Q.
|
||||
unfold isIn_b, dec.
|
||||
destruct (isIn_decidable a X1)
|
||||
; destruct (isIn_decidable a X2)
|
||||
; destruct (isIn_decidable a Y)
|
||||
; reflexivity.
|
||||
apply comprehension_isIn_b.
|
||||
Defined.
|
||||
|
||||
End operations_isIn.
|
||||
|
||||
Global Opaque isIn_b.
|
||||
|
||||
Lemma comprehension_isIn (Y : FSet A) (ϕ : A -> Bool) (a : A) :
|
||||
isIn_b a (comprehension ϕ Y) = andb (isIn_b a Y) (ϕ a).
|
||||
Proof.
|
||||
hinduction Y; try (intros; apply set_path2).
|
||||
- apply empty_isIn.
|
||||
- intro b.
|
||||
destruct (isIn_decidable a {|b|}).
|
||||
* simpl in t.
|
||||
strip_truncations.
|
||||
rewrite t.
|
||||
destruct (ϕ b).
|
||||
** rewrite (L_isIn_b_true _ _ idpath).
|
||||
eauto with bool_lattice_hints.
|
||||
** rewrite empty_isIn ; rewrite (L_isIn_b_true _ _ idpath).
|
||||
eauto with bool_lattice_hints.
|
||||
* destruct (ϕ b).
|
||||
** rewrite L_isIn_b_false.
|
||||
*** eauto with bool_lattice_hints.
|
||||
*** intro.
|
||||
apply (n (tr X)).
|
||||
** rewrite empty_isIn.
|
||||
rewrite L_isIn_b_false.
|
||||
*** eauto with bool_lattice_hints.
|
||||
*** intro.
|
||||
apply (n (tr X)).
|
||||
- intros X Y HaX HaY.
|
||||
rewrite !union_isIn.
|
||||
rewrite HaX, HaY.
|
||||
destruct (isIn_b a X), (isIn_b a Y);
|
||||
eauto with bool_lattice_hints typeclass_instances.
|
||||
Defined.
|
||||
End operations_isIn.
|
||||
|
||||
(* Some suporting tactics *)
|
||||
Ltac simplify_isIn :=
|
||||
repeat (rewrite union_isIn
|
||||
repeat (rewrite union_isIn_b
|
||||
|| rewrite L_isIn_b_aa
|
||||
|| rewrite intersection_isIn
|
||||
|| rewrite comprehension_isIn).
|
||||
|| rewrite intersection_isIn_b
|
||||
|| rewrite comprehension_isIn_b).
|
||||
|
||||
Ltac toBool :=
|
||||
repeat intro;
|
||||
|
@ -178,13 +136,13 @@ Section comprehension_properties.
|
|||
Lemma comprehension_false Y : comprehension (fun (_ : A) => false) Y = E.
|
||||
Proof.
|
||||
toBool.
|
||||
Qed.
|
||||
Defined.
|
||||
|
||||
Lemma comprehension_all : forall (X : FSet A),
|
||||
comprehension (fun a => isIn_b a X) X = X.
|
||||
Proof.
|
||||
toBool.
|
||||
Qed.
|
||||
Defined.
|
||||
|
||||
Lemma comprehension_subset : forall ϕ (X : FSet A),
|
||||
U (comprehension ϕ X) X = X.
|
||||
|
|
|
@ -94,15 +94,33 @@ Section properties.
|
|||
auto.
|
||||
Defined.
|
||||
|
||||
Hint Unfold set_eq set_subset.
|
||||
|
||||
Ltac simplify := intros ; autounfold in * ; apply reflect_eq ; reduce.
|
||||
|
||||
Definition well_defined_union : forall (A : Type) (X1 X2 Y1 Y2 : T A),
|
||||
set_eq A X1 Y1 -> set_eq A X2 Y2 -> set_eq A (union X1 X2) (union Y1 Y2).
|
||||
Proof.
|
||||
simplify.
|
||||
rewrite X, X0.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Definition well_defined_filter : forall (A : Type) (ϕ : A -> Bool) (X Y : T A),
|
||||
set_eq A X Y -> set_eq A (filter ϕ X) (filter ϕ Y).
|
||||
Proof.
|
||||
simplify.
|
||||
rewrite X0.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Variable (A : Type).
|
||||
Context `{DecidablePaths A}.
|
||||
|
||||
Lemma union_comm : forall (X Y : T A),
|
||||
set_eq A (union X Y) (union Y X).
|
||||
Proof.
|
||||
intros.
|
||||
apply reflect_eq.
|
||||
reduce.
|
||||
simplify.
|
||||
apply lattice_fset.
|
||||
Defined.
|
||||
|
||||
|
|
Loading…
Reference in New Issue