mirror of
https://github.com/nmvdw/HITs-Examples
synced 2025-11-03 15:13:51 +01:00
Make everything work with the new notation
This commit is contained in:
@@ -5,30 +5,29 @@ Require Import FSets implementations.interface.
|
||||
Section Operations.
|
||||
Context `{Univalence}.
|
||||
|
||||
Global Instance list_empty : hasEmpty list := fun A => nil.
|
||||
Global Instance list_empty A : hasEmpty (list A) := nil.
|
||||
|
||||
Global Instance list_single : hasSingleton list := fun A a => cons a nil.
|
||||
Global Instance list_single A: hasSingleton (list A) A := fun a => cons a nil.
|
||||
|
||||
Global Instance list_union : hasUnion list.
|
||||
Global Instance list_union A : hasUnion (list A).
|
||||
Proof.
|
||||
intros A l1 l2.
|
||||
intros l1 l2.
|
||||
induction l1.
|
||||
* apply l2.
|
||||
* apply (cons a IHl1).
|
||||
Defined.
|
||||
|
||||
Global Instance list_membership : hasMembership list.
|
||||
Global Instance list_membership A : hasMembership (list A) A.
|
||||
Proof.
|
||||
intros A.
|
||||
intros a l.
|
||||
induction l as [ | b l IHl].
|
||||
- apply False_hp.
|
||||
- apply (hor (a = b) IHl).
|
||||
Defined.
|
||||
|
||||
Global Instance list_comprehension : hasComprehension list.
|
||||
Global Instance list_comprehension A: hasComprehension (list A) A.
|
||||
Proof.
|
||||
intros A ϕ l.
|
||||
intros ϕ l.
|
||||
induction l as [ | b l IHl].
|
||||
- apply nil.
|
||||
- apply (if ϕ b then cons b IHl else IHl).
|
||||
@@ -36,8 +35,8 @@ Section Operations.
|
||||
|
||||
Fixpoint list_to_set A (l : list A) : FSet A :=
|
||||
match l with
|
||||
| nil => E
|
||||
| cons a l => U (L a) (list_to_set A l)
|
||||
| nil => ∅
|
||||
| cons a l => {|a|} ∪ (list_to_set A l)
|
||||
end.
|
||||
|
||||
End Operations.
|
||||
@@ -60,10 +59,10 @@ Section ListToSet.
|
||||
* apply (tr (inr z2)).
|
||||
Defined.
|
||||
|
||||
Definition empty_empty : list_to_set A empty = ∅ := idpath.
|
||||
Definition empty_empty : list_to_set A ∅ = ∅ := idpath.
|
||||
|
||||
Lemma filter_comprehension (ϕ : A -> Bool) (l : list A) :
|
||||
list_to_set A (filter ϕ l) = comprehension ϕ (list_to_set A l).
|
||||
list_to_set A (filter ϕ l) = {| list_to_set A l & ϕ |}.
|
||||
Proof.
|
||||
induction l ; cbn in *.
|
||||
- reflexivity.
|
||||
@@ -81,7 +80,7 @@ Section ListToSet.
|
||||
list_to_set A (union l1 l2) = (list_to_set A l1) ∪ (list_to_set A l2).
|
||||
Proof.
|
||||
induction l1 ; induction l2 ; cbn.
|
||||
- apply (union_idem _)^.
|
||||
- apply (nl _)^.
|
||||
- apply (nl _)^.
|
||||
- rewrite IHl1.
|
||||
apply assoc.
|
||||
|
||||
Reference in New Issue
Block a user