mirror of
https://github.com/nmvdw/HITs-Examples
synced 2026-01-09 00:13:51 +01:00
Make everything work with the new notation
This commit is contained in:
@@ -223,7 +223,7 @@ Section enumerated_fset.
|
||||
end.
|
||||
|
||||
Lemma list_to_fset_ext (ls : list A) (a : A):
|
||||
listExt ls a -> isIn a (list_to_fset ls).
|
||||
listExt ls a -> a ∈ (list_to_fset ls).
|
||||
Proof.
|
||||
induction ls as [|x xs]; simpl.
|
||||
- apply idmap.
|
||||
@@ -269,7 +269,7 @@ Section fset_dec_enumerated.
|
||||
- intros a X Hls.
|
||||
strip_truncations. apply tr.
|
||||
destruct Hls as [ls Hls].
|
||||
exists (cons a ls). intros b. simpl.
|
||||
exists (cons a ls). intros b. cbn.
|
||||
f_ap.
|
||||
- intros. apply path_ishprop.
|
||||
- intros. apply path_ishprop.
|
||||
@@ -294,16 +294,16 @@ Section subobjects.
|
||||
Definition enumeratedS (P : Sub A) : hProp :=
|
||||
enumerated (sigT P).
|
||||
|
||||
Lemma enumeratedS_empty : enumeratedS empty_sub.
|
||||
Lemma enumeratedS_empty : closedEmpty enumeratedS.
|
||||
Proof.
|
||||
unfold enumeratedS.
|
||||
apply tr. exists nil. simpl.
|
||||
intros [a Ha]. assumption.
|
||||
Defined.
|
||||
|
||||
Lemma enumeratedS_singleton (x : A) : enumeratedS (singleton x).
|
||||
Lemma enumeratedS_singleton : closedSingleton enumeratedS.
|
||||
Proof.
|
||||
apply tr. simpl.
|
||||
intros x. apply tr. simpl.
|
||||
exists (cons (x;tr idpath) nil).
|
||||
intros [y Hxy]. simpl.
|
||||
strip_truncations. apply tr.
|
||||
@@ -417,7 +417,7 @@ Section subobjects.
|
||||
end.
|
||||
|
||||
Lemma list_weaken_to_fset_ext (P : Sub A) (ls : list (sigT P)) (a : A) (Ha : P a):
|
||||
listExt ls (a;Ha) -> isIn a (list_weaken_to_fset P ls).
|
||||
listExt ls (a;Ha) -> a ∈ (list_weaken_to_fset P ls).
|
||||
Proof.
|
||||
induction ls as [|[x Hx] xs]; simpl.
|
||||
- apply idmap.
|
||||
|
||||
@@ -6,7 +6,7 @@ Section k_finite.
|
||||
Context (A : Type).
|
||||
Context `{Univalence}.
|
||||
|
||||
Definition map (X : FSet A) : Sub A := fun a => isIn a X.
|
||||
Definition map (X : FSet A) : Sub A := fun a => a ∈ X.
|
||||
|
||||
Global Instance map_injective : IsEmbedding map.
|
||||
Proof.
|
||||
@@ -69,37 +69,35 @@ Section structure_k_finite.
|
||||
Context (A : Type).
|
||||
Context `{Univalence}.
|
||||
|
||||
Lemma map_union : forall X Y : FSet A, map (U X Y) = max_fun (map X) (map Y).
|
||||
Lemma map_union : forall X Y : FSet A, map (X ∪ Y) = max_fun (map X) (map Y).
|
||||
Proof.
|
||||
intros.
|
||||
unfold map, max_fun.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma k_finite_union : hasUnion (Kf_sub A).
|
||||
Lemma k_finite_union : closedUnion (Kf_sub A).
|
||||
Proof.
|
||||
unfold hasUnion, Kf_sub, Kf_sub_intern.
|
||||
unfold closedUnion, Kf_sub, Kf_sub_intern.
|
||||
intros.
|
||||
destruct X0 as [SX XP].
|
||||
destruct X1 as [SY YP].
|
||||
exists (U SX SY).
|
||||
exists (SX ∪ SY).
|
||||
rewrite map_union.
|
||||
rewrite XP, YP.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma k_finite_empty : hasEmpty (Kf_sub A).
|
||||
Lemma k_finite_empty : closedEmpty (Kf_sub A).
|
||||
Proof.
|
||||
unfold hasEmpty, Kf_sub, Kf_sub_intern, map, empty_sub.
|
||||
exists E.
|
||||
exists ∅.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma k_finite_singleton : hasSingleton (Kf_sub A).
|
||||
Lemma k_finite_singleton : closedSingleton (Kf_sub A).
|
||||
Proof.
|
||||
unfold hasSingleton, Kf_sub, Kf_sub_intern, map, singleton.
|
||||
intro.
|
||||
exists (L a).
|
||||
exists {|a|}.
|
||||
cbn.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
@@ -108,7 +106,7 @@ Section structure_k_finite.
|
||||
|
||||
Lemma k_finite_hasDecidableEmpty : hasDecidableEmpty (Kf_sub A).
|
||||
Proof.
|
||||
unfold hasDecidableEmpty, hasEmpty, Kf_sub, Kf_sub_intern, map.
|
||||
unfold hasDecidableEmpty, closedEmpty, Kf_sub, Kf_sub_intern, map.
|
||||
intros.
|
||||
destruct X0 as [SX EX].
|
||||
rewrite EX.
|
||||
|
||||
Reference in New Issue
Block a user