mirror of https://github.com/nmvdw/HITs-Examples
Make everything work with the new notation
This commit is contained in:
parent
80dabe3162
commit
dad6686c4c
|
@ -25,10 +25,10 @@ Section sub_classes.
|
|||
apply _.
|
||||
Defined.
|
||||
|
||||
Definition hasUnion := forall X Y, C X -> C Y -> C (max_fun X Y).
|
||||
Definition hasIntersection := forall X Y, C X -> C Y -> C (min_fun X Y).
|
||||
Definition hasEmpty := C empty_sub.
|
||||
Definition hasSingleton := forall a, C (singleton a).
|
||||
Definition closedUnion := forall X Y, C X -> C Y -> C (max_fun X Y).
|
||||
Definition closedIntersection := forall X Y, C X -> C Y -> C (min_fun X Y).
|
||||
Definition closedEmpty := C empty_sub.
|
||||
Definition closedSingleton := forall a, C (singleton a).
|
||||
Definition hasDecidableEmpty := forall X, C X -> hor (X = empty_sub) (hexists (fun a => X a)).
|
||||
End sub_classes.
|
||||
|
||||
|
@ -37,12 +37,12 @@ Section isIn.
|
|||
Variable C : (A -> hProp) -> hProp.
|
||||
|
||||
Context `{Univalence}.
|
||||
Context {HS : hasSingleton C} {HIn : forall X, C X -> forall a, Decidable (X a)}.
|
||||
Context {HS : closedSingleton C} {HIn : forall X, C X -> forall a, Decidable (X a)}.
|
||||
|
||||
Theorem decidable_A_isIn : forall a b : A, Decidable (Trunc (-1) (b = a)).
|
||||
Proof.
|
||||
intros.
|
||||
unfold Decidable, hasSingleton in *.
|
||||
unfold Decidable, closedSingleton in *.
|
||||
pose (HIn (singleton a) (HS a) b).
|
||||
destruct s.
|
||||
- unfold singleton in t.
|
||||
|
@ -71,13 +71,13 @@ Section intersect.
|
|||
Defined.
|
||||
|
||||
Context
|
||||
{HI :hasIntersection C} {HE : hasEmpty C}
|
||||
{HS : hasSingleton C} {HDE : hasDecidableEmpty C}.
|
||||
{HI : closedIntersection C} {HE : closedEmpty C}
|
||||
{HS : closedSingleton C} {HDE : hasDecidableEmpty C}.
|
||||
|
||||
Theorem decidable_A_intersect : forall a b : A, Decidable (Trunc (-1) (b = a)).
|
||||
Proof.
|
||||
intros.
|
||||
unfold Decidable, hasEmpty, hasIntersection, hasSingleton, hasDecidableEmpty in *.
|
||||
unfold Decidable, closedEmpty, closedIntersection, closedSingleton, hasDecidableEmpty in *.
|
||||
pose (HI (singleton a) (singleton b) (HS a) (HS b)) as IntAB.
|
||||
pose (HDE (min_fun (singleton a) (singleton b)) IntAB) as IntE.
|
||||
refine (@Trunc_rec _ _ _ _ _ IntE) ; intros [p | p] ; unfold min_fun, singleton in p.
|
||||
|
|
|
@ -5,30 +5,29 @@ Require Import FSets implementations.interface.
|
|||
Section Operations.
|
||||
Context `{Univalence}.
|
||||
|
||||
Global Instance list_empty : hasEmpty list := fun A => nil.
|
||||
Global Instance list_empty A : hasEmpty (list A) := nil.
|
||||
|
||||
Global Instance list_single : hasSingleton list := fun A a => cons a nil.
|
||||
Global Instance list_single A: hasSingleton (list A) A := fun a => cons a nil.
|
||||
|
||||
Global Instance list_union : hasUnion list.
|
||||
Global Instance list_union A : hasUnion (list A).
|
||||
Proof.
|
||||
intros A l1 l2.
|
||||
intros l1 l2.
|
||||
induction l1.
|
||||
* apply l2.
|
||||
* apply (cons a IHl1).
|
||||
Defined.
|
||||
|
||||
Global Instance list_membership : hasMembership list.
|
||||
Global Instance list_membership A : hasMembership (list A) A.
|
||||
Proof.
|
||||
intros A.
|
||||
intros a l.
|
||||
induction l as [ | b l IHl].
|
||||
- apply False_hp.
|
||||
- apply (hor (a = b) IHl).
|
||||
Defined.
|
||||
|
||||
Global Instance list_comprehension : hasComprehension list.
|
||||
Global Instance list_comprehension A: hasComprehension (list A) A.
|
||||
Proof.
|
||||
intros A ϕ l.
|
||||
intros ϕ l.
|
||||
induction l as [ | b l IHl].
|
||||
- apply nil.
|
||||
- apply (if ϕ b then cons b IHl else IHl).
|
||||
|
@ -36,8 +35,8 @@ Section Operations.
|
|||
|
||||
Fixpoint list_to_set A (l : list A) : FSet A :=
|
||||
match l with
|
||||
| nil => E
|
||||
| cons a l => U (L a) (list_to_set A l)
|
||||
| nil => ∅
|
||||
| cons a l => {|a|} ∪ (list_to_set A l)
|
||||
end.
|
||||
|
||||
End Operations.
|
||||
|
@ -60,10 +59,10 @@ Section ListToSet.
|
|||
* apply (tr (inr z2)).
|
||||
Defined.
|
||||
|
||||
Definition empty_empty : list_to_set A empty = ∅ := idpath.
|
||||
Definition empty_empty : list_to_set A ∅ = ∅ := idpath.
|
||||
|
||||
Lemma filter_comprehension (ϕ : A -> Bool) (l : list A) :
|
||||
list_to_set A (filter ϕ l) = comprehension ϕ (list_to_set A l).
|
||||
list_to_set A (filter ϕ l) = {| list_to_set A l & ϕ |}.
|
||||
Proof.
|
||||
induction l ; cbn in *.
|
||||
- reflexivity.
|
||||
|
@ -81,7 +80,7 @@ Section ListToSet.
|
|||
list_to_set A (union l1 l2) = (list_to_set A l1) ∪ (list_to_set A l2).
|
||||
Proof.
|
||||
induction l1 ; induction l2 ; cbn.
|
||||
- apply (union_idem _)^.
|
||||
- apply (nl _)^.
|
||||
- apply (nl _)^.
|
||||
- rewrite IHl1.
|
||||
apply assoc.
|
||||
|
|
|
@ -223,7 +223,7 @@ Section enumerated_fset.
|
|||
end.
|
||||
|
||||
Lemma list_to_fset_ext (ls : list A) (a : A):
|
||||
listExt ls a -> isIn a (list_to_fset ls).
|
||||
listExt ls a -> a ∈ (list_to_fset ls).
|
||||
Proof.
|
||||
induction ls as [|x xs]; simpl.
|
||||
- apply idmap.
|
||||
|
@ -269,7 +269,7 @@ Section fset_dec_enumerated.
|
|||
- intros a X Hls.
|
||||
strip_truncations. apply tr.
|
||||
destruct Hls as [ls Hls].
|
||||
exists (cons a ls). intros b. simpl.
|
||||
exists (cons a ls). intros b. cbn.
|
||||
f_ap.
|
||||
- intros. apply path_ishprop.
|
||||
- intros. apply path_ishprop.
|
||||
|
@ -294,16 +294,16 @@ Section subobjects.
|
|||
Definition enumeratedS (P : Sub A) : hProp :=
|
||||
enumerated (sigT P).
|
||||
|
||||
Lemma enumeratedS_empty : enumeratedS empty_sub.
|
||||
Lemma enumeratedS_empty : closedEmpty enumeratedS.
|
||||
Proof.
|
||||
unfold enumeratedS.
|
||||
apply tr. exists nil. simpl.
|
||||
intros [a Ha]. assumption.
|
||||
Defined.
|
||||
|
||||
Lemma enumeratedS_singleton (x : A) : enumeratedS (singleton x).
|
||||
Lemma enumeratedS_singleton : closedSingleton enumeratedS.
|
||||
Proof.
|
||||
apply tr. simpl.
|
||||
intros x. apply tr. simpl.
|
||||
exists (cons (x;tr idpath) nil).
|
||||
intros [y Hxy]. simpl.
|
||||
strip_truncations. apply tr.
|
||||
|
@ -417,7 +417,7 @@ Section subobjects.
|
|||
end.
|
||||
|
||||
Lemma list_weaken_to_fset_ext (P : Sub A) (ls : list (sigT P)) (a : A) (Ha : P a):
|
||||
listExt ls (a;Ha) -> isIn a (list_weaken_to_fset P ls).
|
||||
listExt ls (a;Ha) -> a ∈ (list_weaken_to_fset P ls).
|
||||
Proof.
|
||||
induction ls as [|[x Hx] xs]; simpl.
|
||||
- apply idmap.
|
||||
|
|
|
@ -6,7 +6,7 @@ Section k_finite.
|
|||
Context (A : Type).
|
||||
Context `{Univalence}.
|
||||
|
||||
Definition map (X : FSet A) : Sub A := fun a => isIn a X.
|
||||
Definition map (X : FSet A) : Sub A := fun a => a ∈ X.
|
||||
|
||||
Global Instance map_injective : IsEmbedding map.
|
||||
Proof.
|
||||
|
@ -69,37 +69,35 @@ Section structure_k_finite.
|
|||
Context (A : Type).
|
||||
Context `{Univalence}.
|
||||
|
||||
Lemma map_union : forall X Y : FSet A, map (U X Y) = max_fun (map X) (map Y).
|
||||
Lemma map_union : forall X Y : FSet A, map (X ∪ Y) = max_fun (map X) (map Y).
|
||||
Proof.
|
||||
intros.
|
||||
unfold map, max_fun.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma k_finite_union : hasUnion (Kf_sub A).
|
||||
Lemma k_finite_union : closedUnion (Kf_sub A).
|
||||
Proof.
|
||||
unfold hasUnion, Kf_sub, Kf_sub_intern.
|
||||
unfold closedUnion, Kf_sub, Kf_sub_intern.
|
||||
intros.
|
||||
destruct X0 as [SX XP].
|
||||
destruct X1 as [SY YP].
|
||||
exists (U SX SY).
|
||||
exists (SX ∪ SY).
|
||||
rewrite map_union.
|
||||
rewrite XP, YP.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma k_finite_empty : hasEmpty (Kf_sub A).
|
||||
Lemma k_finite_empty : closedEmpty (Kf_sub A).
|
||||
Proof.
|
||||
unfold hasEmpty, Kf_sub, Kf_sub_intern, map, empty_sub.
|
||||
exists E.
|
||||
exists ∅.
|
||||
reflexivity.
|
||||
Defined.
|
||||
|
||||
Lemma k_finite_singleton : hasSingleton (Kf_sub A).
|
||||
Lemma k_finite_singleton : closedSingleton (Kf_sub A).
|
||||
Proof.
|
||||
unfold hasSingleton, Kf_sub, Kf_sub_intern, map, singleton.
|
||||
intro.
|
||||
exists (L a).
|
||||
exists {|a|}.
|
||||
cbn.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
|
@ -108,7 +106,7 @@ Section structure_k_finite.
|
|||
|
||||
Lemma k_finite_hasDecidableEmpty : hasDecidableEmpty (Kf_sub A).
|
||||
Proof.
|
||||
unfold hasDecidableEmpty, hasEmpty, Kf_sub, Kf_sub_intern, map.
|
||||
unfold hasDecidableEmpty, closedEmpty, Kf_sub, Kf_sub_intern, map.
|
||||
intros.
|
||||
destruct X0 as [SX EX].
|
||||
rewrite EX.
|
||||
|
|
Loading…
Reference in New Issue