mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-03 23:23:51 +01:00 
			
		
		
		
	Merge Leon's changes into hrecursion
This commit is contained in:
		
							
								
								
									
										67
									
								
								FinSets.v
									
									
									
									
									
								
							
							
						
						
									
										67
									
								
								FinSets.v
									
									
									
									
									
								
							@@ -418,6 +418,38 @@ hrecursion Y; try (intros; apply set_path2).
 | 
				
			|||||||
  reflexivity.
 | 
					  reflexivity.
 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Lemma comprehension_union X Y Z : 
 | 
				
			||||||
 | 
						U (comprehension (fun a => isIn a Y) X)
 | 
				
			||||||
 | 
						  (comprehension (fun a => isIn a Z) X) =
 | 
				
			||||||
 | 
						  comprehension (fun a => isIn a (U Y Z)) X.
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					hrecursion X; try (intros; apply set_path2).
 | 
				
			||||||
 | 
					- cbn. apply nl.
 | 
				
			||||||
 | 
					- cbn. intro a. 
 | 
				
			||||||
 | 
							destruct (isIn a Y); simpl;
 | 
				
			||||||
 | 
							destruct (isIn a Z); simpl.
 | 
				
			||||||
 | 
							apply idem.
 | 
				
			||||||
 | 
							apply nr.
 | 
				
			||||||
 | 
							apply nl.
 | 
				
			||||||
 | 
							apply nl.
 | 
				
			||||||
 | 
					- cbn. intros X1 X2 IH1 IH2.
 | 
				
			||||||
 | 
						rewrite assoc.
 | 
				
			||||||
 | 
						rewrite (comm _ (comprehension (fun a : A => isIn a Y) X1) 
 | 
				
			||||||
 | 
									  (comprehension (fun a : A => isIn a Y) X2)).
 | 
				
			||||||
 | 
					  rewrite <- (assoc _   
 | 
				
			||||||
 | 
					  				  (comprehension (fun a : A => isIn a Y) X2)
 | 
				
			||||||
 | 
					       		 (comprehension (fun a : A => isIn a Y) X1)
 | 
				
			||||||
 | 
					       		 (comprehension (fun a : A => isIn a Z) X1)
 | 
				
			||||||
 | 
					       		 ).
 | 
				
			||||||
 | 
					  rewrite IH1.
 | 
				
			||||||
 | 
					  rewrite comm.
 | 
				
			||||||
 | 
					  rewrite assoc. 
 | 
				
			||||||
 | 
					  rewrite (comm _ (comprehension (fun a : A => isIn a Z) X2) _).
 | 
				
			||||||
 | 
					  rewrite IH2.
 | 
				
			||||||
 | 
					  apply comm.
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Lemma comprehension_idem' `{Funext}: 
 | 
					Lemma comprehension_idem' `{Funext}: 
 | 
				
			||||||
   forall (X:FSet A), forall Y, comprehension (fun x => x ∈ (U X Y)) X = X.
 | 
					   forall (X:FSet A), forall Y, comprehension (fun x => x ∈ (U X Y)) X = X.
 | 
				
			||||||
Proof.
 | 
					Proof.
 | 
				
			||||||
@@ -455,9 +487,40 @@ intros X Y.
 | 
				
			|||||||
apply (comprehension (fun (a : A) => isIn a X) Y).
 | 
					apply (comprehension (fun (a : A) => isIn a X) Y).
 | 
				
			||||||
Defined.
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Lemma intersection_comm X Y: intersection X Y = intersection Y X.
 | 
				
			||||||
 | 
					Proof.
 | 
				
			||||||
 | 
					hrecursion X;  try (intros; apply set_path2).
 | 
				
			||||||
 | 
					- cbn. unfold intersection. apply comprehension_false.
 | 
				
			||||||
 | 
					- cbn. unfold intersection. intros a.
 | 
				
			||||||
 | 
					  hrecursion Y; try (intros; apply set_path2).
 | 
				
			||||||
 | 
					  + cbn. reflexivity.
 | 
				
			||||||
 | 
					  + cbn. intros. unfold deceq. 
 | 
				
			||||||
 | 
					  		destruct  (dec (a0 = a)). 
 | 
				
			||||||
 | 
					  		rewrite p. destruct (dec (a=a)).
 | 
				
			||||||
 | 
					  		reflexivity.
 | 
				
			||||||
 | 
					  		contradiction n. 
 | 
				
			||||||
 | 
					  		reflexivity. 
 | 
				
			||||||
 | 
							destruct  (dec (a = a0)).
 | 
				
			||||||
 | 
							contradiction n. apply p^. reflexivity.
 | 
				
			||||||
 | 
					 	+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
 | 
				
			||||||
 | 
					 	 	rewrite IH1. 
 | 
				
			||||||
 | 
					 	 	rewrite IH2.
 | 
				
			||||||
 | 
					 	 	symmetry.
 | 
				
			||||||
 | 
					 	 	rewrite 	(comprehension_union (L a)).
 | 
				
			||||||
 | 
					 	 	reflexivity.
 | 
				
			||||||
 | 
					- intros X1 X2 IH1 IH2.
 | 
				
			||||||
 | 
					  cbn.
 | 
				
			||||||
 | 
					  unfold intersection in *.
 | 
				
			||||||
 | 
					  rewrite <- IH1.
 | 
				
			||||||
 | 
					  rewrite <- IH2.
 | 
				
			||||||
 | 
						rewrite comprehension_union.
 | 
				
			||||||
 | 
						reflexivity.
 | 
				
			||||||
 | 
					Defined.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
(** Subset ordering *)
 | 
					(** Subset ordering *)
 | 
				
			||||||
Definition subset : forall (x : FSet A) (y : FSet A), Bool.
 | 
					Definition subset (x : FSet A) (y : FSet A) : Bool.
 | 
				
			||||||
Proof. intros x y.
 | 
					Proof.
 | 
				
			||||||
hrecursion x.
 | 
					hrecursion x.
 | 
				
			||||||
- apply true.
 | 
					- apply true.
 | 
				
			||||||
- intro a. apply (isIn a y).
 | 
					- intro a. apply (isIn a y).
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user