mirror of https://github.com/nmvdw/HITs-Examples
538 lines
15 KiB
Coq
538 lines
15 KiB
Coq
Require Export HoTT.
|
||
Require Import HitTactics.
|
||
|
||
Module Export FinSet.
|
||
Section FSet.
|
||
Variable A : Type.
|
||
|
||
Private Inductive FSet : Type :=
|
||
| E : FSet
|
||
| L : A -> FSet
|
||
| U : FSet -> FSet -> FSet.
|
||
|
||
Notation "{| x |}" := (L x).
|
||
Infix "∪" := U (at level 8, right associativity).
|
||
Notation "∅" := E.
|
||
|
||
Axiom assoc : forall (x y z : FSet ),
|
||
x ∪ (y ∪ z) = (x ∪ y) ∪ z.
|
||
|
||
Axiom comm : forall (x y : FSet),
|
||
x ∪ y = y ∪ x.
|
||
|
||
Axiom nl : forall (x : FSet),
|
||
∅ ∪ x = x.
|
||
|
||
Axiom nr : forall (x : FSet),
|
||
x ∪ ∅ = x.
|
||
|
||
Axiom idem : forall (x : A),
|
||
{| x |} ∪ {|x|} = {|x|}.
|
||
|
||
Axiom trunc : IsHSet FSet.
|
||
|
||
Fixpoint FSet_rec
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet)
|
||
{struct x}
|
||
: P
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
|
||
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
|
||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
|
||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
||
end) assocP commP nlP nrP idemP H.
|
||
|
||
Axiom FSet_rec_beta_assoc : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y z : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
|
||
=
|
||
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_comm : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x y : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nl : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
|
||
=
|
||
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_nr : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : FSet),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
|
||
=
|
||
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_rec_beta_idem : forall
|
||
(P : Type)
|
||
(H: IsHSet P)
|
||
(e : P)
|
||
(l : A -> P)
|
||
(u : P -> P -> P)
|
||
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
|
||
(commP : forall (x y : P), u x y = u y x)
|
||
(nlP : forall (x : P), u e x = x)
|
||
(nrP : forall (x : P), u x e = x)
|
||
(idemP : forall (x : A), u (l x) (l x) = l x)
|
||
(x : A),
|
||
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
|
||
(* Induction principle *)
|
||
Fixpoint FSet_ind
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet)
|
||
{struct x}
|
||
: P x
|
||
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
|
||
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
|
||
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
|
||
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
||
end) H assocP commP nlP nrP idemP.
|
||
|
||
|
||
Axiom FSet_ind_beta_assoc : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y: FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x y z : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP)
|
||
(assoc x y z)
|
||
=
|
||
(assocP x y z
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
|
||
).
|
||
|
||
|
||
|
||
Axiom FSet_ind_beta_comm : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x y : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (comm x y)
|
||
=
|
||
(commP x y
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_nl : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nl x)
|
||
=
|
||
(nlP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_nr : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : FSet),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nr x)
|
||
=
|
||
(nrP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
|
||
).
|
||
|
||
Axiom FSet_ind_beta_idem : forall
|
||
(P : FSet -> Type)
|
||
(H : forall a : FSet, IsHSet (P a))
|
||
(eP : P E)
|
||
(lP : forall a: A, P (L a))
|
||
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
|
||
(assocP : forall (x y z : FSet)
|
||
(px: P x) (py: P y) (pz: P z),
|
||
assoc x y z #
|
||
(uP x (U y z) px (uP y z py pz))
|
||
=
|
||
(uP (U x y) z (uP x y px py) pz))
|
||
(commP : forall (x y : FSet) (px: P x) (py: P y),
|
||
comm x y #
|
||
uP x y px py = uP y x py px)
|
||
(nlP : forall (x : FSet) (px: P x),
|
||
nl x # uP E x eP px = px)
|
||
(nrP : forall (x : FSet) (px: P x),
|
||
nr x # uP x E px eP = px)
|
||
(idemP : forall (x : A),
|
||
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
|
||
(x : A),
|
||
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (idem x)
|
||
=
|
||
idemP x.
|
||
|
||
End FSet.
|
||
|
||
Instance FSet_recursion A : HitRecursion (FSet A) := {
|
||
indTy := _; recTy := _;
|
||
H_inductor := FSet_ind A; H_recursor := FSet_rec A }.
|
||
|
||
Arguments E {_}.
|
||
Arguments U {_} _ _.
|
||
Arguments L {_} _.
|
||
|
||
End FinSet.
|
||
|
||
Section functions.
|
||
Parameter A : Type.
|
||
Context (A_eqdec: forall (x y : A), Decidable (x = y)).
|
||
Definition deceq (x y : A) :=
|
||
if dec (x = y) then true else false.
|
||
|
||
Notation "{| x |}" := (L x).
|
||
Infix "∪" := U (at level 8, right associativity).
|
||
Notation "∅" := E.
|
||
|
||
(** Properties of union *)
|
||
Lemma union_idem : forall (X : FSet A), U X X = X.
|
||
Proof.
|
||
hinduction; try (intros; apply set_path2).
|
||
- apply nr.
|
||
- intros. apply idem.
|
||
- intros X Y HX HY. etransitivity.
|
||
rewrite assoc. rewrite (comm _ X Y). rewrite <- (assoc _ Y X X).
|
||
rewrite comm.
|
||
rewrite assoc. rewrite HX. rewrite HY. reflexivity.
|
||
rewrite comm. reflexivity.
|
||
Defined.
|
||
|
||
(** Membership predicate *)
|
||
Definition isIn : A -> FSet A -> Bool.
|
||
Proof.
|
||
intros a.
|
||
hrecursion.
|
||
- exact false.
|
||
- intro a'. apply (deceq a a').
|
||
- apply orb.
|
||
- intros x y z. compute. destruct x; reflexivity.
|
||
- intros x y. compute. destruct x, y; reflexivity.
|
||
- intros x. compute. reflexivity.
|
||
- intros x. compute. destruct x; reflexivity.
|
||
- intros a'. compute. destruct (A_eqdec a a'); reflexivity.
|
||
Defined.
|
||
|
||
Infix "∈" := isIn (at level 9, right associativity).
|
||
|
||
Lemma isIn_singleton_eq a b : a ∈ {| b |} = true -> a = b.
|
||
Proof. cbv.
|
||
destruct (A_eqdec a b). intro. apply p.
|
||
intro X.
|
||
contradiction (false_ne_true X).
|
||
Defined.
|
||
|
||
Lemma isIn_empty_false a : a ∈ ∅ = true -> Empty.
|
||
Proof.
|
||
cbv. intro X.
|
||
contradiction (false_ne_true X).
|
||
Defined.
|
||
|
||
Lemma isIn_union a X Y : a ∈ (X ∪ Y) = (a ∈ X || a ∈ Y)%Bool.
|
||
Proof. reflexivity. Qed.
|
||
|
||
(** Set comprehension *)
|
||
Definition comprehension :
|
||
(A -> Bool) -> FSet A -> FSet A.
|
||
Proof.
|
||
intros P.
|
||
hrecursion.
|
||
- apply E.
|
||
- intro a.
|
||
refine (if (P a) then L a else E).
|
||
- apply U.
|
||
- intros. cbv. apply assoc.
|
||
- intros. cbv. apply comm.
|
||
- intros. cbv. apply nl.
|
||
- intros. cbv. apply nr.
|
||
- intros. cbv.
|
||
destruct (P x); simpl.
|
||
+ apply idem.
|
||
+ apply nl.
|
||
Defined.
|
||
|
||
Lemma comprehension_false Y : comprehension (fun a => a ∈ ∅) Y = E.
|
||
Proof.
|
||
hrecursion Y; try (intros; apply set_path2).
|
||
- cbn. reflexivity.
|
||
- cbn. reflexivity.
|
||
- intros x y IHa IHb.
|
||
cbn.
|
||
rewrite IHa.
|
||
rewrite IHb.
|
||
rewrite nl.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
Lemma comprehension_union X Y Z :
|
||
U (comprehension (fun a => isIn a Y) X)
|
||
(comprehension (fun a => isIn a Z) X) =
|
||
comprehension (fun a => isIn a (U Y Z)) X.
|
||
Proof.
|
||
hrecursion X; try (intros; apply set_path2).
|
||
- cbn. apply nl.
|
||
- cbn. intro a.
|
||
destruct (isIn a Y); simpl;
|
||
destruct (isIn a Z); simpl.
|
||
apply idem.
|
||
apply nr.
|
||
apply nl.
|
||
apply nl.
|
||
- cbn. intros X1 X2 IH1 IH2.
|
||
rewrite assoc.
|
||
rewrite (comm _ (comprehension (fun a : A => isIn a Y) X1)
|
||
(comprehension (fun a : A => isIn a Y) X2)).
|
||
rewrite <- (assoc _
|
||
(comprehension (fun a : A => isIn a Y) X2)
|
||
(comprehension (fun a : A => isIn a Y) X1)
|
||
(comprehension (fun a : A => isIn a Z) X1)
|
||
).
|
||
rewrite IH1.
|
||
rewrite comm.
|
||
rewrite assoc.
|
||
rewrite (comm _ (comprehension (fun a : A => isIn a Z) X2) _).
|
||
rewrite IH2.
|
||
apply comm.
|
||
Defined.
|
||
|
||
|
||
Lemma comprehension_idem' `{Funext}:
|
||
forall (X:FSet A), forall Y, comprehension (fun x => x ∈ (U X Y)) X = X.
|
||
Proof.
|
||
hinduction.
|
||
all: try (intros; apply path_forall; intro; apply set_path2).
|
||
- intro Y. cbv. reflexivity.
|
||
- intros a Y. cbn.
|
||
unfold deceq;
|
||
destruct (dec (a = a)); simpl.
|
||
+ reflexivity.
|
||
+ contradiction n. reflexivity.
|
||
- intros X1 X2 IH1 IH2 Y.
|
||
cbn -[isIn].
|
||
f_ap.
|
||
+ rewrite <- assoc. apply (IH1 (U X2 Y)).
|
||
+ rewrite (comm _ X1 X2).
|
||
rewrite <- (assoc _ X2 X1 Y).
|
||
apply (IH2 (U X1 Y)).
|
||
Defined.
|
||
|
||
Lemma comprehension_idem `{Funext}:
|
||
forall (X:FSet A), comprehension (fun x => x ∈ X) X = X.
|
||
Proof.
|
||
intros X.
|
||
enough (comprehension (fun x : A => isIn x (U X X)) X = X).
|
||
rewrite (union_idem) in X0. assumption.
|
||
apply comprehension_idem'.
|
||
Defined.
|
||
|
||
(** Set intersection *)
|
||
Definition intersection :
|
||
FSet A -> FSet A -> FSet A.
|
||
Proof.
|
||
intros X Y.
|
||
apply (comprehension (fun (a : A) => isIn a X) Y).
|
||
Defined.
|
||
|
||
Lemma intersection_comm X Y: intersection X Y = intersection Y X.
|
||
Proof.
|
||
hrecursion X; try (intros; apply set_path2).
|
||
- cbn. unfold intersection. apply comprehension_false.
|
||
- cbn. unfold intersection. intros a.
|
||
hrecursion Y; try (intros; apply set_path2).
|
||
+ cbn. reflexivity.
|
||
+ cbn. intros. unfold deceq.
|
||
destruct (dec (a0 = a)).
|
||
rewrite p. destruct (dec (a=a)).
|
||
reflexivity.
|
||
contradiction n.
|
||
reflexivity.
|
||
destruct (dec (a = a0)).
|
||
contradiction n. apply p^. reflexivity.
|
||
+ cbn -[isIn]. intros Y1 Y2 IH1 IH2.
|
||
rewrite IH1.
|
||
rewrite IH2.
|
||
symmetry.
|
||
rewrite (comprehension_union (L a)).
|
||
reflexivity.
|
||
- intros X1 X2 IH1 IH2.
|
||
cbn.
|
||
unfold intersection in *.
|
||
rewrite <- IH1.
|
||
rewrite <- IH2.
|
||
rewrite comprehension_union.
|
||
reflexivity.
|
||
Defined.
|
||
|
||
|
||
(** Subset ordering *)
|
||
Definition subset (x : FSet A) (y : FSet A) : Bool.
|
||
Proof.
|
||
hrecursion x.
|
||
- apply true.
|
||
- intro a. apply (isIn a y).
|
||
- intros a b. apply (andb a b).
|
||
- intros a b c. compute. destruct a; reflexivity.
|
||
- intros a b. compute. destruct a, b; reflexivity.
|
||
- intros x. compute. reflexivity.
|
||
- intros x. compute. destruct x;reflexivity.
|
||
- intros a. simpl.
|
||
destruct (isIn a y); reflexivity.
|
||
Defined.
|
||
|
||
Infix "⊆" := subset (at level 8, right associativity).
|
||
|
||
End functions. |