mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-04 07:33:51 +01:00 
			
		
		
		
	Move the B-finiteness proofs and simplify them a bit
This commit is contained in:
		
							
								
								
									
										135
									
								
								FiniteSets/variations/b_finite.v
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								FiniteSets/variations/b_finite.v
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,135 @@
 | 
			
		||||
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
 | 
			
		||||
Require Import HoTT.
 | 
			
		||||
Require Import Sub notation.
 | 
			
		||||
 | 
			
		||||
Section finite_hott.
 | 
			
		||||
  Variable A : Type.
 | 
			
		||||
  Context `{Univalence} `{IsHSet A}.
 | 
			
		||||
 | 
			
		||||
  (* A subobject is B-finite if its extension is B-finite as a type *)
 | 
			
		||||
  Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
 | 
			
		||||
 | 
			
		||||
  Global Instance singleton_contr a : Contr {b : A & b ∈ {|a|}}.
 | 
			
		||||
  Proof.
 | 
			
		||||
    exists (a; tr idpath).
 | 
			
		||||
    intros [b p].
 | 
			
		||||
    simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
 | 
			
		||||
    clear p; intro p. simpl.
 | 
			
		||||
    apply path_sigma' with (p^).
 | 
			
		||||
    apply path_ishprop.
 | 
			
		||||
  Defined.
 | 
			
		||||
  
 | 
			
		||||
  Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b ∈ {|a|}}.
 | 
			
		||||
  Proof.  
 | 
			
		||||
    intros _. apply (center {b : A & b ∈ {|a|}}).
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
 | 
			
		||||
  Proof. apply _. Defined.
 | 
			
		||||
 | 
			
		||||
  Definition singleton : closedSingleton Bfin.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros a.
 | 
			
		||||
    simple refine (Build_Finite _ 1 _).
 | 
			
		||||
    apply tr.
 | 
			
		||||
    symmetry.
 | 
			
		||||
    refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Definition empty_finite : closedEmpty Bfin.
 | 
			
		||||
  Proof.
 | 
			
		||||
    simple refine (Build_Finite _ 0 _).
 | 
			
		||||
    apply tr.
 | 
			
		||||
    simple refine (BuildEquiv _ _ _ _).
 | 
			
		||||
    intros [a p]; apply p.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Definition decidable_empty_finite : hasDecidableEmpty Bfin.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros X Y.
 | 
			
		||||
    destruct Y as [n Xn].
 | 
			
		||||
    strip_truncations.
 | 
			
		||||
    destruct Xn as [f [g fg gf adj]].
 | 
			
		||||
    destruct n.
 | 
			
		||||
    - refine (tr(inl _)).
 | 
			
		||||
      apply path_forall. intro z.
 | 
			
		||||
      apply path_iff_hprop.
 | 
			
		||||
      * intros p.
 | 
			
		||||
        contradiction (f (z;p)).
 | 
			
		||||
      * contradiction.
 | 
			
		||||
    - refine (tr(inr _)).
 | 
			
		||||
      apply (tr(g(inr tt))).
 | 
			
		||||
  Defined.
 | 
			
		||||
  
 | 
			
		||||
  Lemma no_union
 | 
			
		||||
        (f : forall (X Y : Sub A),
 | 
			
		||||
            Bfin X -> Bfin Y -> Bfin (X ∪ Y))
 | 
			
		||||
        (a b : A) :
 | 
			
		||||
      hor (a = b) (a = b -> Empty).
 | 
			
		||||
  Proof.
 | 
			
		||||
    specialize (f {|a|} {|b|} (singleton a) (singleton b)).
 | 
			
		||||
    unfold Bfin in f.
 | 
			
		||||
    destruct f as [n pn].
 | 
			
		||||
    strip_truncations.
 | 
			
		||||
    destruct pn as [f [g fg gf _]].
 | 
			
		||||
    destruct n as [|n].
 | 
			
		||||
    unfold Sect in *.
 | 
			
		||||
    - contradiction f.
 | 
			
		||||
      exists a. apply (tr(inl(tr idpath))).
 | 
			
		||||
    - destruct n as [|n].
 | 
			
		||||
      + (* If the size of the union is 1, then (a = b) *)
 | 
			
		||||
        refine (tr (inl _)).
 | 
			
		||||
        pose (s1 := (a;tr(inl(tr idpath)))
 | 
			
		||||
               : {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
 | 
			
		||||
        pose (s2 := (b;tr(inr(tr idpath)))
 | 
			
		||||
               : {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
 | 
			
		||||
        refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
 | 
			
		||||
        assert (fs_eq : f s1 = f s2).
 | 
			
		||||
        { by apply path_ishprop. }
 | 
			
		||||
        refine (ap (fun x => (g x).1) fs_eq).
 | 
			
		||||
      + (* Otherwise, ¬(a = b) *)
 | 
			
		||||
        refine (tr (inr _)).
 | 
			
		||||
        intros p.
 | 
			
		||||
        pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
 | 
			
		||||
        pose (s2 := inr tt : Fin n + Unit + Unit).
 | 
			
		||||
        pose (gs1 := g s1).
 | 
			
		||||
        pose (c := g s1).
 | 
			
		||||
        pose (gs2 := g s2).
 | 
			
		||||
        pose (d := g s2).
 | 
			
		||||
        assert (Hgs1 : gs1 = c) by reflexivity.
 | 
			
		||||
        assert (Hgs2 : gs2 = d) by reflexivity.
 | 
			
		||||
        destruct c as [x px'].
 | 
			
		||||
        destruct d as [y py'].        
 | 
			
		||||
        simple refine (Trunc_ind _ _ px') ; intros px.
 | 
			
		||||
        simple refine (Trunc_ind _ _ py') ; intros py.
 | 
			
		||||
        simpl.
 | 
			
		||||
        cut (x = y).
 | 
			
		||||
        {
 | 
			
		||||
          enough (s1 = s2) as X.
 | 
			
		||||
          {
 | 
			
		||||
            intros. 
 | 
			
		||||
            unfold s1, s2 in X.
 | 
			
		||||
            refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
 | 
			
		||||
            + apply tt.
 | 
			
		||||
            + rewrite X ; apply tt.
 | 
			
		||||
          }
 | 
			
		||||
          transitivity (f gs1).
 | 
			
		||||
          { apply (fg s1)^. }
 | 
			
		||||
          symmetry ; transitivity (f gs2).
 | 
			
		||||
          { apply (fg s2)^. }
 | 
			
		||||
          rewrite Hgs1, Hgs2.
 | 
			
		||||
          f_ap.
 | 
			
		||||
          simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
 | 
			
		||||
          destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
 | 
			
		||||
          * apply (p2 @ p1^).
 | 
			
		||||
          * refine (p2 @ _^ @ p1^). auto.
 | 
			
		||||
          * refine (p2 @ _ @ p1^). auto.
 | 
			
		||||
          * apply (p2 @ p1^).
 | 
			
		||||
        }
 | 
			
		||||
        destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
 | 
			
		||||
        ** apply (px @ py^).
 | 
			
		||||
        ** refine (px @ _ @ py^). auto.
 | 
			
		||||
        ** refine (px @ _ @ py^). symmetry. auto.
 | 
			
		||||
        ** apply (px @ py^).
 | 
			
		||||
  Defined.
 | 
			
		||||
End finite_hott.
 | 
			
		||||
		Reference in New Issue
	
	Block a user