Move the B-finiteness proofs and simplify them a bit

This commit is contained in:
Dan Frumin 2017-08-09 16:01:35 +02:00
parent cb0af9a36a
commit f08918b60c
3 changed files with 136 additions and 141 deletions

View File

@ -100,144 +100,3 @@ Section intersect.
apply (inl (tr (t2^ @ t1))).
Defined.
End intersect.
Section finite_hott.
Variable A : Type.
Context `{Univalence} `{IsHSet A}.
Definition finite (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}).
Definition singleton : closedSingleton finite.
Proof.
intros a.
simple refine (Build_Finite _ _ _).
- apply 1.
- apply tr.
simple refine (BuildEquiv _ _ _ _).
* apply (fun _ => inr tt).
* simple refine (BuildIsEquiv _ _ _ _ _ _ _) ; unfold Sect in *.
** apply (fun _ => (a;tr idpath)).
** intros x ; destruct x as [ | x] ; try contradiction.
destruct x ; reflexivity.
** intros [b bp] ; simpl.
strip_truncations.
simple refine (path_sigma _ _ _ _ _).
*** apply bp^.
*** apply path_ishprop.
** intros.
apply path_ishprop.
Defined.
Definition empty_finite : closedEmpty finite.
Proof.
simple refine (Build_Finite _ _ _).
- apply 0.
- apply tr.
simple refine (BuildEquiv _ _ _ _).
intros [a p] ; apply p.
Defined.
Definition decidable_empty_finite : hasDecidableEmpty finite.
Proof.
intros X Y.
destruct Y as [n Xn].
strip_truncations.
simpl in Xn.
destruct Xn as [f [g fg gf adj]].
destruct n.
- refine (tr(inl _)).
unfold empty.
apply path_forall.
intro z.
apply path_iff_hprop.
* intros p.
contradiction (f(z;p)).
* contradiction.
- refine (tr(inr _)).
apply (tr(g(inr tt))).
Defined.
Lemma no_union
(f : forall (X Y : Sub A),
Finite {a : A & X a} -> Finite {a : A & Y a}
-> Finite ({a : A & (X Y) a}))
(a b : A)
:
hor (a = b) (a = b -> Empty).
Proof.
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
destruct f as [n pn].
strip_truncations.
destruct pn as [f [g fg gf adj]].
unfold Sect in *.
destruct n.
- cbn in *. contradiction f.
exists a.
apply (tr(inl(tr idpath))).
- destruct n ; cbn in *.
-- pose ((a;tr(inl(tr idpath)))
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
as s1.
pose ((b;tr(inr(tr idpath)))
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
as s2.
pose (f s1) as fs1.
pose (f s2) as fs2.
assert (fs1 = fs2) as fs_eq.
{ apply path_ishprop. }
pose (g fs1) as gfs1.
pose (g fs2) as gfs2.
refine (tr(inl _)).
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
unfold fs1, fs2 in fs_eq. rewrite fs_eq.
reflexivity.
-- refine (tr(inr _)).
intros p.
pose (inl(inr tt) : Fin n + Unit + Unit) as s1.
pose (inr tt : Fin n + Unit + Unit) as s2.
pose (g s1) as gs1.
pose (c := g s1).
assert (c = gs1) as ps1. reflexivity.
pose (g s2) as gs2.
pose (d := g s2).
assert (d = gs2) as ps2. reflexivity.
pose (f gs1) as gfs1.
pose (f gs2) as gfs2.
destruct c as [x px] ; destruct d as [y py].
simple refine (Trunc_ind _ _ px) ; intros p1.
simple refine (Trunc_ind _ _ py) ; intros p2.
simpl.
assert (x = y -> Empty) as X1.
{
enough (s1 = s2) as X.
{
intros.
unfold s1, s2 in X.
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
+ apply tt.
+ rewrite X ; apply tt.
}
transitivity gfs1.
{ unfold gfs1, s1. apply (fg s1)^. }
symmetry ; transitivity gfs2.
{ unfold gfs2, s2. apply (fg s2)^. }
unfold gfs2, gfs1.
rewrite <- ps1, <- ps2.
f_ap.
simple refine (path_sigma _ _ _ _ _).
* cbn.
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
** apply (p2 @ p1^).
** refine (p2 @ _^ @ p1^). auto.
** refine (p2 @ _ @ p1^). auto.
** apply (p2 @ p1^).
* apply path_ishprop.
}
apply X1.
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
** apply (p1 @ p2^).
** refine (p1 @ _ @ p2^). auto.
** refine (p1 @ _ @ p2^). symmetry. auto.
** apply (p1 @ p2^).
Defined.
End finite_hott.

View File

@ -23,5 +23,6 @@ implementations/interface.v
implementations/lists.v
variations/enumerated.v
variations/k_finite.v
variations/b_finite.v
#empty_set.v
ordered.v

View File

@ -0,0 +1,135 @@
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
Require Import HoTT.
Require Import Sub notation.
Section finite_hott.
Variable A : Type.
Context `{Univalence} `{IsHSet A}.
(* A subobject is B-finite if its extension is B-finite as a type *)
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a X}).
Global Instance singleton_contr a : Contr {b : A & b {|a|}}.
Proof.
exists (a; tr idpath).
intros [b p].
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
clear p; intro p. simpl.
apply path_sigma' with (p^).
apply path_ishprop.
Defined.
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b {|a|}}.
Proof.
intros _. apply (center {b : A & b {|a|}}).
Defined.
Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
Proof. apply _. Defined.
Definition singleton : closedSingleton Bfin.
Proof.
intros a.
simple refine (Build_Finite _ 1 _).
apply tr.
symmetry.
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
Defined.
Definition empty_finite : closedEmpty Bfin.
Proof.
simple refine (Build_Finite _ 0 _).
apply tr.
simple refine (BuildEquiv _ _ _ _).
intros [a p]; apply p.
Defined.
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
Proof.
intros X Y.
destruct Y as [n Xn].
strip_truncations.
destruct Xn as [f [g fg gf adj]].
destruct n.
- refine (tr(inl _)).
apply path_forall. intro z.
apply path_iff_hprop.
* intros p.
contradiction (f (z;p)).
* contradiction.
- refine (tr(inr _)).
apply (tr(g(inr tt))).
Defined.
Lemma no_union
(f : forall (X Y : Sub A),
Bfin X -> Bfin Y -> Bfin (X Y))
(a b : A) :
hor (a = b) (a = b -> Empty).
Proof.
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
unfold Bfin in f.
destruct f as [n pn].
strip_truncations.
destruct pn as [f [g fg gf _]].
destruct n as [|n].
unfold Sect in *.
- contradiction f.
exists a. apply (tr(inl(tr idpath))).
- destruct n as [|n].
+ (* If the size of the union is 1, then (a = b) *)
refine (tr (inl _)).
pose (s1 := (a;tr(inl(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
pose (s2 := (b;tr(inr(tr idpath)))
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
assert (fs_eq : f s1 = f s2).
{ by apply path_ishprop. }
refine (ap (fun x => (g x).1) fs_eq).
+ (* Otherwise, ¬(a = b) *)
refine (tr (inr _)).
intros p.
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
pose (s2 := inr tt : Fin n + Unit + Unit).
pose (gs1 := g s1).
pose (c := g s1).
pose (gs2 := g s2).
pose (d := g s2).
assert (Hgs1 : gs1 = c) by reflexivity.
assert (Hgs2 : gs2 = d) by reflexivity.
destruct c as [x px'].
destruct d as [y py'].
simple refine (Trunc_ind _ _ px') ; intros px.
simple refine (Trunc_ind _ _ py') ; intros py.
simpl.
cut (x = y).
{
enough (s1 = s2) as X.
{
intros.
unfold s1, s2 in X.
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
+ apply tt.
+ rewrite X ; apply tt.
}
transitivity (f gs1).
{ apply (fg s1)^. }
symmetry ; transitivity (f gs2).
{ apply (fg s2)^. }
rewrite Hgs1, Hgs2.
f_ap.
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
* apply (p2 @ p1^).
* refine (p2 @ _^ @ p1^). auto.
* refine (p2 @ _ @ p1^). auto.
* apply (p2 @ p1^).
}
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
** apply (px @ py^).
** refine (px @ _ @ py^). auto.
** refine (px @ _ @ py^). symmetry. auto.
** apply (px @ py^).
Defined.
End finite_hott.