mirror of https://github.com/nmvdw/HITs-Examples
Move the B-finiteness proofs and simplify them a bit
This commit is contained in:
parent
cb0af9a36a
commit
f08918b60c
141
FiniteSets/Sub.v
141
FiniteSets/Sub.v
|
@ -100,144 +100,3 @@ Section intersect.
|
|||
apply (inl (tr (t2^ @ t1))).
|
||||
Defined.
|
||||
End intersect.
|
||||
|
||||
Section finite_hott.
|
||||
Variable A : Type.
|
||||
Context `{Univalence} `{IsHSet A}.
|
||||
|
||||
Definition finite (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
|
||||
|
||||
Definition singleton : closedSingleton finite.
|
||||
Proof.
|
||||
intros a.
|
||||
simple refine (Build_Finite _ _ _).
|
||||
- apply 1.
|
||||
- apply tr.
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
* apply (fun _ => inr tt).
|
||||
* simple refine (BuildIsEquiv _ _ _ _ _ _ _) ; unfold Sect in *.
|
||||
** apply (fun _ => (a;tr idpath)).
|
||||
** intros x ; destruct x as [ | x] ; try contradiction.
|
||||
destruct x ; reflexivity.
|
||||
** intros [b bp] ; simpl.
|
||||
strip_truncations.
|
||||
simple refine (path_sigma _ _ _ _ _).
|
||||
*** apply bp^.
|
||||
*** apply path_ishprop.
|
||||
** intros.
|
||||
apply path_ishprop.
|
||||
Defined.
|
||||
|
||||
Definition empty_finite : closedEmpty finite.
|
||||
Proof.
|
||||
simple refine (Build_Finite _ _ _).
|
||||
- apply 0.
|
||||
- apply tr.
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
intros [a p] ; apply p.
|
||||
Defined.
|
||||
|
||||
Definition decidable_empty_finite : hasDecidableEmpty finite.
|
||||
Proof.
|
||||
intros X Y.
|
||||
destruct Y as [n Xn].
|
||||
strip_truncations.
|
||||
simpl in Xn.
|
||||
destruct Xn as [f [g fg gf adj]].
|
||||
destruct n.
|
||||
- refine (tr(inl _)).
|
||||
unfold empty.
|
||||
apply path_forall.
|
||||
intro z.
|
||||
apply path_iff_hprop.
|
||||
* intros p.
|
||||
contradiction (f(z;p)).
|
||||
* contradiction.
|
||||
- refine (tr(inr _)).
|
||||
apply (tr(g(inr tt))).
|
||||
Defined.
|
||||
|
||||
Lemma no_union
|
||||
(f : forall (X Y : Sub A),
|
||||
Finite {a : A & X a} -> Finite {a : A & Y a}
|
||||
-> Finite ({a : A & (X ∪ Y) a}))
|
||||
(a b : A)
|
||||
:
|
||||
hor (a = b) (a = b -> Empty).
|
||||
Proof.
|
||||
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
||||
destruct f as [n pn].
|
||||
strip_truncations.
|
||||
destruct pn as [f [g fg gf adj]].
|
||||
unfold Sect in *.
|
||||
destruct n.
|
||||
- cbn in *. contradiction f.
|
||||
exists a.
|
||||
apply (tr(inl(tr idpath))).
|
||||
- destruct n ; cbn in *.
|
||||
-- pose ((a;tr(inl(tr idpath)))
|
||||
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
|
||||
as s1.
|
||||
pose ((b;tr(inr(tr idpath)))
|
||||
: {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
|
||||
as s2.
|
||||
pose (f s1) as fs1.
|
||||
pose (f s2) as fs2.
|
||||
assert (fs1 = fs2) as fs_eq.
|
||||
{ apply path_ishprop. }
|
||||
pose (g fs1) as gfs1.
|
||||
pose (g fs2) as gfs2.
|
||||
refine (tr(inl _)).
|
||||
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
||||
unfold fs1, fs2 in fs_eq. rewrite fs_eq.
|
||||
reflexivity.
|
||||
-- refine (tr(inr _)).
|
||||
intros p.
|
||||
pose (inl(inr tt) : Fin n + Unit + Unit) as s1.
|
||||
pose (inr tt : Fin n + Unit + Unit) as s2.
|
||||
pose (g s1) as gs1.
|
||||
pose (c := g s1).
|
||||
assert (c = gs1) as ps1. reflexivity.
|
||||
pose (g s2) as gs2.
|
||||
pose (d := g s2).
|
||||
assert (d = gs2) as ps2. reflexivity.
|
||||
pose (f gs1) as gfs1.
|
||||
pose (f gs2) as gfs2.
|
||||
destruct c as [x px] ; destruct d as [y py].
|
||||
simple refine (Trunc_ind _ _ px) ; intros p1.
|
||||
simple refine (Trunc_ind _ _ py) ; intros p2.
|
||||
simpl.
|
||||
assert (x = y -> Empty) as X1.
|
||||
{
|
||||
enough (s1 = s2) as X.
|
||||
{
|
||||
intros.
|
||||
unfold s1, s2 in X.
|
||||
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
||||
+ apply tt.
|
||||
+ rewrite X ; apply tt.
|
||||
}
|
||||
transitivity gfs1.
|
||||
{ unfold gfs1, s1. apply (fg s1)^. }
|
||||
symmetry ; transitivity gfs2.
|
||||
{ unfold gfs2, s2. apply (fg s2)^. }
|
||||
unfold gfs2, gfs1.
|
||||
rewrite <- ps1, <- ps2.
|
||||
f_ap.
|
||||
simple refine (path_sigma _ _ _ _ _).
|
||||
* cbn.
|
||||
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
|
||||
** apply (p2 @ p1^).
|
||||
** refine (p2 @ _^ @ p1^). auto.
|
||||
** refine (p2 @ _ @ p1^). auto.
|
||||
** apply (p2 @ p1^).
|
||||
* apply path_ishprop.
|
||||
}
|
||||
apply X1.
|
||||
destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
|
||||
** apply (p1 @ p2^).
|
||||
** refine (p1 @ _ @ p2^). auto.
|
||||
** refine (p1 @ _ @ p2^). symmetry. auto.
|
||||
** apply (p1 @ p2^).
|
||||
Defined.
|
||||
End finite_hott.
|
|
@ -23,5 +23,6 @@ implementations/interface.v
|
|||
implementations/lists.v
|
||||
variations/enumerated.v
|
||||
variations/k_finite.v
|
||||
variations/b_finite.v
|
||||
#empty_set.v
|
||||
ordered.v
|
||||
|
|
|
@ -0,0 +1,135 @@
|
|||
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
|
||||
Require Import HoTT.
|
||||
Require Import Sub notation.
|
||||
|
||||
Section finite_hott.
|
||||
Variable A : Type.
|
||||
Context `{Univalence} `{IsHSet A}.
|
||||
|
||||
(* A subobject is B-finite if its extension is B-finite as a type *)
|
||||
Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
|
||||
|
||||
Global Instance singleton_contr a : Contr {b : A & b ∈ {|a|}}.
|
||||
Proof.
|
||||
exists (a; tr idpath).
|
||||
intros [b p].
|
||||
simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
|
||||
clear p; intro p. simpl.
|
||||
apply path_sigma' with (p^).
|
||||
apply path_ishprop.
|
||||
Defined.
|
||||
|
||||
Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b ∈ {|a|}}.
|
||||
Proof.
|
||||
intros _. apply (center {b : A & b ∈ {|a|}}).
|
||||
Defined.
|
||||
|
||||
Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
|
||||
Proof. apply _. Defined.
|
||||
|
||||
Definition singleton : closedSingleton Bfin.
|
||||
Proof.
|
||||
intros a.
|
||||
simple refine (Build_Finite _ 1 _).
|
||||
apply tr.
|
||||
symmetry.
|
||||
refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
|
||||
Defined.
|
||||
|
||||
Definition empty_finite : closedEmpty Bfin.
|
||||
Proof.
|
||||
simple refine (Build_Finite _ 0 _).
|
||||
apply tr.
|
||||
simple refine (BuildEquiv _ _ _ _).
|
||||
intros [a p]; apply p.
|
||||
Defined.
|
||||
|
||||
Definition decidable_empty_finite : hasDecidableEmpty Bfin.
|
||||
Proof.
|
||||
intros X Y.
|
||||
destruct Y as [n Xn].
|
||||
strip_truncations.
|
||||
destruct Xn as [f [g fg gf adj]].
|
||||
destruct n.
|
||||
- refine (tr(inl _)).
|
||||
apply path_forall. intro z.
|
||||
apply path_iff_hprop.
|
||||
* intros p.
|
||||
contradiction (f (z;p)).
|
||||
* contradiction.
|
||||
- refine (tr(inr _)).
|
||||
apply (tr(g(inr tt))).
|
||||
Defined.
|
||||
|
||||
Lemma no_union
|
||||
(f : forall (X Y : Sub A),
|
||||
Bfin X -> Bfin Y -> Bfin (X ∪ Y))
|
||||
(a b : A) :
|
||||
hor (a = b) (a = b -> Empty).
|
||||
Proof.
|
||||
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
||||
unfold Bfin in f.
|
||||
destruct f as [n pn].
|
||||
strip_truncations.
|
||||
destruct pn as [f [g fg gf _]].
|
||||
destruct n as [|n].
|
||||
unfold Sect in *.
|
||||
- contradiction f.
|
||||
exists a. apply (tr(inl(tr idpath))).
|
||||
- destruct n as [|n].
|
||||
+ (* If the size of the union is 1, then (a = b) *)
|
||||
refine (tr (inl _)).
|
||||
pose (s1 := (a;tr(inl(tr idpath)))
|
||||
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
||||
pose (s2 := (b;tr(inr(tr idpath)))
|
||||
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
||||
refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
|
||||
assert (fs_eq : f s1 = f s2).
|
||||
{ by apply path_ishprop. }
|
||||
refine (ap (fun x => (g x).1) fs_eq).
|
||||
+ (* Otherwise, ¬(a = b) *)
|
||||
refine (tr (inr _)).
|
||||
intros p.
|
||||
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
|
||||
pose (s2 := inr tt : Fin n + Unit + Unit).
|
||||
pose (gs1 := g s1).
|
||||
pose (c := g s1).
|
||||
pose (gs2 := g s2).
|
||||
pose (d := g s2).
|
||||
assert (Hgs1 : gs1 = c) by reflexivity.
|
||||
assert (Hgs2 : gs2 = d) by reflexivity.
|
||||
destruct c as [x px'].
|
||||
destruct d as [y py'].
|
||||
simple refine (Trunc_ind _ _ px') ; intros px.
|
||||
simple refine (Trunc_ind _ _ py') ; intros py.
|
||||
simpl.
|
||||
cut (x = y).
|
||||
{
|
||||
enough (s1 = s2) as X.
|
||||
{
|
||||
intros.
|
||||
unfold s1, s2 in X.
|
||||
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
||||
+ apply tt.
|
||||
+ rewrite X ; apply tt.
|
||||
}
|
||||
transitivity (f gs1).
|
||||
{ apply (fg s1)^. }
|
||||
symmetry ; transitivity (f gs2).
|
||||
{ apply (fg s2)^. }
|
||||
rewrite Hgs1, Hgs2.
|
||||
f_ap.
|
||||
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
|
||||
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
|
||||
* apply (p2 @ p1^).
|
||||
* refine (p2 @ _^ @ p1^). auto.
|
||||
* refine (p2 @ _ @ p1^). auto.
|
||||
* apply (p2 @ p1^).
|
||||
}
|
||||
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
|
||||
** apply (px @ py^).
|
||||
** refine (px @ _ @ py^). auto.
|
||||
** refine (px @ _ @ py^). symmetry. auto.
|
||||
** apply (px @ py^).
|
||||
Defined.
|
||||
End finite_hott.
|
Loading…
Reference in New Issue