mirror of
				https://github.com/nmvdw/HITs-Examples
				synced 2025-11-03 23:23:51 +01:00 
			
		
		
		
	Move the B-finiteness proofs and simplify them a bit
This commit is contained in:
		
							
								
								
									
										141
									
								
								FiniteSets/Sub.v
									
									
									
									
									
								
							
							
						
						
									
										141
									
								
								FiniteSets/Sub.v
									
									
									
									
									
								
							@@ -100,144 +100,3 @@ Section intersect.
 | 
			
		||||
      apply (inl (tr (t2^ @ t1))).
 | 
			
		||||
  Defined.
 | 
			
		||||
End intersect.
 | 
			
		||||
 | 
			
		||||
Section finite_hott.
 | 
			
		||||
  Variable A : Type.
 | 
			
		||||
  Context `{Univalence} `{IsHSet A}.
 | 
			
		||||
  
 | 
			
		||||
  Definition finite (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
 | 
			
		||||
 | 
			
		||||
  Definition singleton : closedSingleton finite.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros a.
 | 
			
		||||
    simple refine (Build_Finite _ _ _).
 | 
			
		||||
    - apply 1.
 | 
			
		||||
    - apply tr.
 | 
			
		||||
      simple refine (BuildEquiv _ _ _ _).
 | 
			
		||||
      * apply (fun _ => inr tt).
 | 
			
		||||
      * simple refine (BuildIsEquiv _ _ _ _ _ _ _) ; unfold Sect in *.
 | 
			
		||||
        ** apply (fun _ => (a;tr idpath)).
 | 
			
		||||
        ** intros x ; destruct x as [ | x] ; try contradiction.
 | 
			
		||||
           destruct x ; reflexivity.
 | 
			
		||||
        ** intros [b bp] ; simpl.
 | 
			
		||||
           strip_truncations.
 | 
			
		||||
           simple refine (path_sigma _ _ _ _ _).
 | 
			
		||||
           *** apply bp^.
 | 
			
		||||
           *** apply path_ishprop.
 | 
			
		||||
        ** intros.
 | 
			
		||||
           apply path_ishprop.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Definition empty_finite : closedEmpty finite.
 | 
			
		||||
  Proof.
 | 
			
		||||
    simple refine (Build_Finite _ _ _).
 | 
			
		||||
    - apply 0.
 | 
			
		||||
    - apply tr.
 | 
			
		||||
      simple refine (BuildEquiv _ _ _ _).
 | 
			
		||||
      intros [a p] ; apply p.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Definition decidable_empty_finite : hasDecidableEmpty finite.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros X Y.
 | 
			
		||||
    destruct Y as [n Xn].
 | 
			
		||||
    strip_truncations.
 | 
			
		||||
    simpl in Xn.
 | 
			
		||||
    destruct Xn as [f [g fg gf adj]].
 | 
			
		||||
    destruct n.
 | 
			
		||||
    - refine (tr(inl _)).
 | 
			
		||||
      unfold empty.
 | 
			
		||||
      apply path_forall.
 | 
			
		||||
      intro z.
 | 
			
		||||
      apply path_iff_hprop.
 | 
			
		||||
      * intros p.
 | 
			
		||||
        contradiction (f(z;p)).
 | 
			
		||||
      * contradiction.
 | 
			
		||||
    - refine (tr(inr _)).
 | 
			
		||||
      apply (tr(g(inr tt))).
 | 
			
		||||
  Defined.
 | 
			
		||||
  
 | 
			
		||||
  Lemma no_union
 | 
			
		||||
        (f : forall (X Y : Sub A),
 | 
			
		||||
            Finite {a : A & X a} -> Finite {a : A & Y a}
 | 
			
		||||
            -> Finite ({a : A & (X ∪ Y) a}))
 | 
			
		||||
        (a b : A)
 | 
			
		||||
    :
 | 
			
		||||
      hor (a = b) (a = b -> Empty).
 | 
			
		||||
  Proof.
 | 
			
		||||
    specialize (f {|a|} {|b|} (singleton a) (singleton b)).
 | 
			
		||||
    destruct f as [n pn].
 | 
			
		||||
    strip_truncations.
 | 
			
		||||
    destruct pn as [f [g fg gf adj]].
 | 
			
		||||
    unfold Sect in *.
 | 
			
		||||
    destruct n.
 | 
			
		||||
    - cbn in *. contradiction f.
 | 
			
		||||
      exists a.
 | 
			
		||||
      apply (tr(inl(tr idpath))).
 | 
			
		||||
    - destruct n ; cbn in *.
 | 
			
		||||
      -- pose ((a;tr(inl(tr idpath)))
 | 
			
		||||
               : {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
 | 
			
		||||
         as s1.
 | 
			
		||||
         pose ((b;tr(inr(tr idpath)))
 | 
			
		||||
               : {a0 : A & Trunc (-1) (Trunc (-1) (a0 = a) + Trunc (-1) (a0 = b))})
 | 
			
		||||
         as s2.
 | 
			
		||||
         pose (f s1) as fs1.
 | 
			
		||||
         pose (f s2) as fs2.
 | 
			
		||||
         assert (fs1 = fs2) as fs_eq.
 | 
			
		||||
         { apply path_ishprop. }
 | 
			
		||||
         pose (g fs1) as gfs1.
 | 
			
		||||
         pose (g fs2) as gfs2.
 | 
			
		||||
         refine (tr(inl _)).
 | 
			
		||||
         refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))). 
 | 
			
		||||
         unfold fs1, fs2 in fs_eq. rewrite fs_eq.
 | 
			
		||||
         reflexivity.
 | 
			
		||||
      -- refine (tr(inr _)).
 | 
			
		||||
         intros p.
 | 
			
		||||
         pose (inl(inr tt) : Fin n + Unit + Unit) as s1.
 | 
			
		||||
         pose (inr tt : Fin n + Unit + Unit) as s2.
 | 
			
		||||
         pose (g s1) as gs1.
 | 
			
		||||
         pose (c := g s1).
 | 
			
		||||
         assert (c = gs1) as ps1. reflexivity.
 | 
			
		||||
         pose (g s2) as gs2.
 | 
			
		||||
         pose (d := g s2).
 | 
			
		||||
         assert (d = gs2) as ps2. reflexivity.
 | 
			
		||||
         pose (f gs1) as gfs1.
 | 
			
		||||
         pose (f gs2) as gfs2.
 | 
			
		||||
         destruct c as [x px] ; destruct d as [y py].
 | 
			
		||||
         simple refine (Trunc_ind _ _ px) ; intros p1.
 | 
			
		||||
         simple refine (Trunc_ind _ _ py) ; intros p2.
 | 
			
		||||
         simpl.
 | 
			
		||||
         assert (x = y -> Empty) as X1.
 | 
			
		||||
         {
 | 
			
		||||
           enough (s1 = s2) as X.
 | 
			
		||||
           {
 | 
			
		||||
             intros. 
 | 
			
		||||
             unfold s1, s2 in X.
 | 
			
		||||
             refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
 | 
			
		||||
             + apply tt.
 | 
			
		||||
             + rewrite X ; apply tt.
 | 
			
		||||
           }
 | 
			
		||||
           transitivity gfs1.
 | 
			
		||||
           { unfold gfs1, s1. apply (fg s1)^. }
 | 
			
		||||
           symmetry ; transitivity gfs2.
 | 
			
		||||
           { unfold gfs2, s2. apply (fg s2)^. }
 | 
			
		||||
           unfold gfs2, gfs1.
 | 
			
		||||
           rewrite <- ps1, <- ps2.
 | 
			
		||||
           f_ap.
 | 
			
		||||
           simple refine (path_sigma _ _ _ _ _).
 | 
			
		||||
           * cbn.
 | 
			
		||||
             destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
 | 
			
		||||
             ** apply (p2 @ p1^).
 | 
			
		||||
             ** refine (p2 @ _^ @ p1^). auto.
 | 
			
		||||
             ** refine (p2 @ _ @ p1^). auto.
 | 
			
		||||
             ** apply (p2 @ p1^).                              
 | 
			
		||||
           * apply path_ishprop.
 | 
			
		||||
         }
 | 
			
		||||
         apply X1.
 | 
			
		||||
         destruct p1 as [p1 | p1] ; destruct p2 as [p2 | p2] ; strip_truncations.
 | 
			
		||||
         ** apply (p1 @ p2^).
 | 
			
		||||
         ** refine (p1 @ _ @ p2^). auto.
 | 
			
		||||
         ** refine (p1 @ _ @ p2^). symmetry. auto.
 | 
			
		||||
         ** apply (p1 @ p2^).
 | 
			
		||||
  Defined.
 | 
			
		||||
End finite_hott.
 | 
			
		||||
@@ -23,5 +23,6 @@ implementations/interface.v
 | 
			
		||||
implementations/lists.v
 | 
			
		||||
variations/enumerated.v
 | 
			
		||||
variations/k_finite.v
 | 
			
		||||
variations/b_finite.v
 | 
			
		||||
#empty_set.v
 | 
			
		||||
ordered.v
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										135
									
								
								FiniteSets/variations/b_finite.v
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								FiniteSets/variations/b_finite.v
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,135 @@
 | 
			
		||||
(* Bishop-finiteness is that "default" notion of finiteness in the HoTT library *)
 | 
			
		||||
Require Import HoTT.
 | 
			
		||||
Require Import Sub notation.
 | 
			
		||||
 | 
			
		||||
Section finite_hott.
 | 
			
		||||
  Variable A : Type.
 | 
			
		||||
  Context `{Univalence} `{IsHSet A}.
 | 
			
		||||
 | 
			
		||||
  (* A subobject is B-finite if its extension is B-finite as a type *)
 | 
			
		||||
  Definition Bfin (X : Sub A) : hProp := BuildhProp (Finite {a : A & a ∈ X}).
 | 
			
		||||
 | 
			
		||||
  Global Instance singleton_contr a : Contr {b : A & b ∈ {|a|}}.
 | 
			
		||||
  Proof.
 | 
			
		||||
    exists (a; tr idpath).
 | 
			
		||||
    intros [b p].
 | 
			
		||||
    simple refine (Trunc_ind (fun p => (a; tr 1%path) = (b; p)) _ p).
 | 
			
		||||
    clear p; intro p. simpl.
 | 
			
		||||
    apply path_sigma' with (p^).
 | 
			
		||||
    apply path_ishprop.
 | 
			
		||||
  Defined.
 | 
			
		||||
  
 | 
			
		||||
  Definition singleton_fin_equiv' a : Fin 1 -> {b : A & b ∈ {|a|}}.
 | 
			
		||||
  Proof.  
 | 
			
		||||
    intros _. apply (center {b : A & b ∈ {|a|}}).
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Global Instance singleton_fin_equiv a : IsEquiv (singleton_fin_equiv' a).
 | 
			
		||||
  Proof. apply _. Defined.
 | 
			
		||||
 | 
			
		||||
  Definition singleton : closedSingleton Bfin.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros a.
 | 
			
		||||
    simple refine (Build_Finite _ 1 _).
 | 
			
		||||
    apply tr.
 | 
			
		||||
    symmetry.
 | 
			
		||||
    refine (BuildEquiv _ _ (singleton_fin_equiv' a) _).
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Definition empty_finite : closedEmpty Bfin.
 | 
			
		||||
  Proof.
 | 
			
		||||
    simple refine (Build_Finite _ 0 _).
 | 
			
		||||
    apply tr.
 | 
			
		||||
    simple refine (BuildEquiv _ _ _ _).
 | 
			
		||||
    intros [a p]; apply p.
 | 
			
		||||
  Defined.
 | 
			
		||||
 | 
			
		||||
  Definition decidable_empty_finite : hasDecidableEmpty Bfin.
 | 
			
		||||
  Proof.
 | 
			
		||||
    intros X Y.
 | 
			
		||||
    destruct Y as [n Xn].
 | 
			
		||||
    strip_truncations.
 | 
			
		||||
    destruct Xn as [f [g fg gf adj]].
 | 
			
		||||
    destruct n.
 | 
			
		||||
    - refine (tr(inl _)).
 | 
			
		||||
      apply path_forall. intro z.
 | 
			
		||||
      apply path_iff_hprop.
 | 
			
		||||
      * intros p.
 | 
			
		||||
        contradiction (f (z;p)).
 | 
			
		||||
      * contradiction.
 | 
			
		||||
    - refine (tr(inr _)).
 | 
			
		||||
      apply (tr(g(inr tt))).
 | 
			
		||||
  Defined.
 | 
			
		||||
  
 | 
			
		||||
  Lemma no_union
 | 
			
		||||
        (f : forall (X Y : Sub A),
 | 
			
		||||
            Bfin X -> Bfin Y -> Bfin (X ∪ Y))
 | 
			
		||||
        (a b : A) :
 | 
			
		||||
      hor (a = b) (a = b -> Empty).
 | 
			
		||||
  Proof.
 | 
			
		||||
    specialize (f {|a|} {|b|} (singleton a) (singleton b)).
 | 
			
		||||
    unfold Bfin in f.
 | 
			
		||||
    destruct f as [n pn].
 | 
			
		||||
    strip_truncations.
 | 
			
		||||
    destruct pn as [f [g fg gf _]].
 | 
			
		||||
    destruct n as [|n].
 | 
			
		||||
    unfold Sect in *.
 | 
			
		||||
    - contradiction f.
 | 
			
		||||
      exists a. apply (tr(inl(tr idpath))).
 | 
			
		||||
    - destruct n as [|n].
 | 
			
		||||
      + (* If the size of the union is 1, then (a = b) *)
 | 
			
		||||
        refine (tr (inl _)).
 | 
			
		||||
        pose (s1 := (a;tr(inl(tr idpath)))
 | 
			
		||||
               : {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
 | 
			
		||||
        pose (s2 := (b;tr(inr(tr idpath)))
 | 
			
		||||
               : {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
 | 
			
		||||
        refine (ap (fun x => x.1) (gf s1)^ @ _ @ (ap (fun x => x.1) (gf s2))).
 | 
			
		||||
        assert (fs_eq : f s1 = f s2).
 | 
			
		||||
        { by apply path_ishprop. }
 | 
			
		||||
        refine (ap (fun x => (g x).1) fs_eq).
 | 
			
		||||
      + (* Otherwise, ¬(a = b) *)
 | 
			
		||||
        refine (tr (inr _)).
 | 
			
		||||
        intros p.
 | 
			
		||||
        pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
 | 
			
		||||
        pose (s2 := inr tt : Fin n + Unit + Unit).
 | 
			
		||||
        pose (gs1 := g s1).
 | 
			
		||||
        pose (c := g s1).
 | 
			
		||||
        pose (gs2 := g s2).
 | 
			
		||||
        pose (d := g s2).
 | 
			
		||||
        assert (Hgs1 : gs1 = c) by reflexivity.
 | 
			
		||||
        assert (Hgs2 : gs2 = d) by reflexivity.
 | 
			
		||||
        destruct c as [x px'].
 | 
			
		||||
        destruct d as [y py'].        
 | 
			
		||||
        simple refine (Trunc_ind _ _ px') ; intros px.
 | 
			
		||||
        simple refine (Trunc_ind _ _ py') ; intros py.
 | 
			
		||||
        simpl.
 | 
			
		||||
        cut (x = y).
 | 
			
		||||
        {
 | 
			
		||||
          enough (s1 = s2) as X.
 | 
			
		||||
          {
 | 
			
		||||
            intros. 
 | 
			
		||||
            unfold s1, s2 in X.
 | 
			
		||||
            refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
 | 
			
		||||
            + apply tt.
 | 
			
		||||
            + rewrite X ; apply tt.
 | 
			
		||||
          }
 | 
			
		||||
          transitivity (f gs1).
 | 
			
		||||
          { apply (fg s1)^. }
 | 
			
		||||
          symmetry ; transitivity (f gs2).
 | 
			
		||||
          { apply (fg s2)^. }
 | 
			
		||||
          rewrite Hgs1, Hgs2.
 | 
			
		||||
          f_ap.
 | 
			
		||||
          simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
 | 
			
		||||
          destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
 | 
			
		||||
          * apply (p2 @ p1^).
 | 
			
		||||
          * refine (p2 @ _^ @ p1^). auto.
 | 
			
		||||
          * refine (p2 @ _ @ p1^). auto.
 | 
			
		||||
          * apply (p2 @ p1^).
 | 
			
		||||
        }
 | 
			
		||||
        destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
 | 
			
		||||
        ** apply (px @ py^).
 | 
			
		||||
        ** refine (px @ _ @ py^). auto.
 | 
			
		||||
        ** refine (px @ _ @ py^). symmetry. auto.
 | 
			
		||||
        ** apply (px @ py^).
 | 
			
		||||
  Defined.
 | 
			
		||||
End finite_hott.
 | 
			
		||||
		Reference in New Issue
	
	Block a user