mirror of https://github.com/nmvdw/HITs-Examples
trailing white spaces
This commit is contained in:
parent
140b02e9f4
commit
f8ed41e5fe
|
@ -19,7 +19,6 @@ hrecursion.
|
||||||
- intros a'. compute. destruct (A_deceq a a'); reflexivity.
|
- intros a'. compute. destruct (A_deceq a a'); reflexivity.
|
||||||
Defined.
|
Defined.
|
||||||
|
|
||||||
Infix "∈" := isIn (at level 9, right associativity).
|
|
||||||
|
|
||||||
Definition comprehension :
|
Definition comprehension :
|
||||||
(A -> Bool) -> FSet A -> FSet A.
|
(A -> Bool) -> FSet A -> FSet A.
|
||||||
|
@ -54,15 +53,16 @@ Proof.
|
||||||
intros X Y.
|
intros X Y.
|
||||||
hrecursion X.
|
hrecursion X.
|
||||||
- exact true.
|
- exact true.
|
||||||
- exact (fun a => (a ∈ Y)).
|
- exact (fun a => (isIn a Y)).
|
||||||
- exact andb.
|
- exact andb.
|
||||||
- intros. compute. destruct x; reflexivity.
|
- intros. compute. destruct x; reflexivity.
|
||||||
- intros x y; compute; destruct x, y; reflexivity.
|
- intros x y; compute; destruct x, y; reflexivity.
|
||||||
- intros x; compute; destruct x; reflexivity.
|
- intros x; compute; destruct x; reflexivity.
|
||||||
- intros x; compute; destruct x; reflexivity.
|
- intros x; compute; destruct x; reflexivity.
|
||||||
- intros x; cbn; destruct (x ∈ Y); reflexivity.
|
- intros x; cbn; destruct (isIn x Y); reflexivity.
|
||||||
Defined.
|
Defined.
|
||||||
|
|
||||||
Notation "⊆" := subset.
|
|
||||||
|
|
||||||
End operations.
|
End operations.
|
||||||
|
|
||||||
|
Infix "∈" := isIn (at level 9, right associativity).
|
||||||
|
Infix "⊆" := subset (at level 10, right associativity).
|
|
@ -439,7 +439,7 @@ Admitted.
|
||||||
|
|
||||||
(* Properties about subset relation. *)
|
(* Properties about subset relation. *)
|
||||||
Lemma subsect_intersection `{Funext} (X Y : FSet A) :
|
Lemma subsect_intersection `{Funext} (X Y : FSet A) :
|
||||||
subset X Y = true -> U X Y = Y.
|
X ⊆ Y = true -> U X Y = Y.
|
||||||
Proof.
|
Proof.
|
||||||
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
||||||
- intros. apply nl.
|
- intros. apply nl.
|
||||||
|
@ -479,4 +479,6 @@ hinduction X; try (intros; apply path_forall; intro; apply set_path2).
|
||||||
rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
|
rewrite <- assoc. rewrite IH2. rewrite IH1. reflexivity.
|
||||||
Defined.
|
Defined.
|
||||||
|
|
||||||
|
Theorem
|
||||||
|
|
||||||
End properties.
|
End properties.
|
||||||
|
|
Loading…
Reference in New Issue