mirror of https://github.com/nmvdw/HITs-Examples
Simplified no union for Bishops
This commit is contained in:
parent
c9e6b35949
commit
fffdb87b4f
|
@ -64,9 +64,9 @@ Section finite_hott.
|
||||||
Lemma no_union `{IsHSet A}
|
Lemma no_union `{IsHSet A}
|
||||||
(f : forall (X Y : Sub A),
|
(f : forall (X Y : Sub A),
|
||||||
Bfin X -> Bfin Y -> Bfin (X ∪ Y))
|
Bfin X -> Bfin Y -> Bfin (X ∪ Y))
|
||||||
(a b : A) :
|
: MerelyDecidablePaths A.
|
||||||
hor (a = b) (a = b -> Empty).
|
|
||||||
Proof.
|
Proof.
|
||||||
|
intros a b.
|
||||||
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
specialize (f {|a|} {|b|} (singleton a) (singleton b)).
|
||||||
unfold Bfin in f.
|
unfold Bfin in f.
|
||||||
destruct f as [n pn].
|
destruct f as [n pn].
|
||||||
|
@ -78,7 +78,7 @@ Section finite_hott.
|
||||||
exists a. apply (tr(inl(tr idpath))).
|
exists a. apply (tr(inl(tr idpath))).
|
||||||
- destruct n as [|n].
|
- destruct n as [|n].
|
||||||
+ (* If the size of the union is 1, then (a = b) *)
|
+ (* If the size of the union is 1, then (a = b) *)
|
||||||
refine (tr (inl _)).
|
refine (inl (tr _)).
|
||||||
pose (s1 := (a;tr(inl(tr idpath)))
|
pose (s1 := (a;tr(inl(tr idpath)))
|
||||||
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
: {c : A & Trunc (-1) (Trunc (-1) (c = a) + Trunc (-1) (c = b))}).
|
||||||
pose (s2 := (b;tr(inr(tr idpath)))
|
pose (s2 := (b;tr(inr(tr idpath)))
|
||||||
|
@ -88,8 +88,8 @@ Section finite_hott.
|
||||||
{ by apply path_ishprop. }
|
{ by apply path_ishprop. }
|
||||||
refine (ap (fun x => (g x).1) fs_eq).
|
refine (ap (fun x => (g x).1) fs_eq).
|
||||||
+ (* Otherwise, ¬(a = b) *)
|
+ (* Otherwise, ¬(a = b) *)
|
||||||
refine (tr (inr _)).
|
refine (inr (fun p => _)).
|
||||||
intros p.
|
strip_truncations.
|
||||||
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
|
pose (s1 := inl (inr tt) : Fin n + Unit + Unit).
|
||||||
pose (s2 := inr tt : Fin n + Unit + Unit).
|
pose (s2 := inr tt : Fin n + Unit + Unit).
|
||||||
pose (gs1 := g s1).
|
pose (gs1 := g s1).
|
||||||
|
@ -100,36 +100,34 @@ Section finite_hott.
|
||||||
assert (Hgs2 : gs2 = d) by reflexivity.
|
assert (Hgs2 : gs2 = d) by reflexivity.
|
||||||
destruct c as [x px'].
|
destruct c as [x px'].
|
||||||
destruct d as [y py'].
|
destruct d as [y py'].
|
||||||
simple refine (Trunc_ind _ _ px') ; intros px.
|
simple refine (Trunc_ind _ _ px') ; intros px
|
||||||
simple refine (Trunc_ind _ _ py') ; intros py.
|
; simple refine (Trunc_ind _ _ py') ; intros py ; simpl.
|
||||||
simpl.
|
|
||||||
cut (x = y).
|
cut (x = y).
|
||||||
{
|
{
|
||||||
enough (s1 = s2) as X.
|
enough (s1 = s2) as X.
|
||||||
{
|
{
|
||||||
intros.
|
|
||||||
unfold s1, s2 in X.
|
unfold s1, s2 in X.
|
||||||
refine (not_is_inl_and_inr' (inl(inr tt)) _ _).
|
contradiction (inl_ne_inr _ _ X).
|
||||||
+ apply tt.
|
|
||||||
+ rewrite X ; apply tt.
|
|
||||||
}
|
}
|
||||||
transitivity (f gs1).
|
unfold gs1, gs2 in *.
|
||||||
{ apply (fg s1)^. }
|
refine ((fg s1)^ @ _ @ fg s2).
|
||||||
symmetry ; transitivity (f gs2).
|
|
||||||
{ apply (fg s2)^. }
|
|
||||||
rewrite Hgs1, Hgs2.
|
rewrite Hgs1, Hgs2.
|
||||||
f_ap.
|
f_ap.
|
||||||
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
|
simple refine (path_sigma _ _ _ _ _); [ | apply path_ishprop ]; simpl.
|
||||||
destruct px as [p1 | p1] ; destruct py as [p2 | p2] ; strip_truncations.
|
destruct px as [px | px] ; destruct py as [py | py]
|
||||||
* apply (p2 @ p1^).
|
; refine (Trunc_rec _ px) ; clear px ; intro px
|
||||||
* refine (p2 @ _^ @ p1^). auto.
|
; refine (Trunc_rec _ py) ; clear py ; intro py.
|
||||||
* refine (p2 @ _ @ p1^). auto.
|
* apply (px @ py^).
|
||||||
* apply (p2 @ p1^).
|
* refine (px @ _ @ py^). auto.
|
||||||
|
* refine (px @ _^ @ py^). auto.
|
||||||
|
* apply (px @ py^).
|
||||||
}
|
}
|
||||||
destruct px as [px | px] ; destruct py as [py | py]; strip_truncations.
|
destruct px as [px | px] ; destruct py as [py | py]
|
||||||
|
; refine (Trunc_rec _ px) ; clear px ; intro px
|
||||||
|
; refine (Trunc_rec _ py) ; clear py ; intro py.
|
||||||
** apply (px @ py^).
|
** apply (px @ py^).
|
||||||
** refine (px @ _ @ py^). auto.
|
** refine (px @ _ @ py^). auto.
|
||||||
** refine (px @ _ @ py^). symmetry. auto.
|
** refine (px @ _^ @ py^). auto.
|
||||||
** apply (px @ py^).
|
** apply (px @ py^).
|
||||||
Defined.
|
Defined.
|
||||||
End finite_hott.
|
End finite_hott.
|
||||||
|
|
Loading…
Reference in New Issue