mirror of https://github.com/nmvdw/HITs-Examples
235 lines
6.1 KiB
Coq
235 lines
6.1 KiB
Coq
(** Operations on the [FSet A] for an arbitrary [A] *)
|
||
Require Import HoTT HitTactics prelude.
|
||
Require Import kuratowski_sets monad_interface extensionality
|
||
list_representation.isomorphism list_representation.list_representation.
|
||
|
||
Section operations.
|
||
(** Monad operations. *)
|
||
Definition fset_fmap {A B : Type} : (A -> B) -> FSet A -> FSet B.
|
||
Proof.
|
||
intro f.
|
||
hrecursion.
|
||
- exact ∅.
|
||
- apply (fun a => {|f a|}).
|
||
- apply (∪).
|
||
- apply assoc.
|
||
- apply comm.
|
||
- apply nl.
|
||
- apply nr.
|
||
- apply (idem o f).
|
||
Defined.
|
||
|
||
Global Instance fset_pure : hasPure FSet.
|
||
Proof.
|
||
split.
|
||
apply (fun _ a => {|a|}).
|
||
Defined.
|
||
|
||
Global Instance fset_bind : hasBind FSet.
|
||
Proof.
|
||
split.
|
||
intros A.
|
||
hrecursion.
|
||
- exact ∅.
|
||
- exact idmap.
|
||
- apply (∪).
|
||
- apply assoc.
|
||
- apply comm.
|
||
- apply nl.
|
||
- apply nr.
|
||
- apply union_idem.
|
||
Defined.
|
||
|
||
(** Set-theoretical operations. *)
|
||
Global Instance fset_comprehension : forall A, hasComprehension (FSet A) A.
|
||
Proof.
|
||
intros A P.
|
||
hrecursion.
|
||
- apply ∅.
|
||
- intro a.
|
||
refine (if (P a) then {|a|} else ∅).
|
||
- apply (∪).
|
||
- apply assoc.
|
||
- apply comm.
|
||
- apply nl.
|
||
- apply nr.
|
||
- intros; simpl.
|
||
destruct (P x).
|
||
+ apply idem.
|
||
+ apply nl.
|
||
Defined.
|
||
|
||
Definition single_product {A B : Type} (a : A) : FSet B -> FSet (A * B).
|
||
Proof.
|
||
hrecursion.
|
||
- apply ∅.
|
||
- intro b.
|
||
apply {|(a, b)|}.
|
||
- apply (∪).
|
||
- apply assoc.
|
||
- apply comm.
|
||
- apply nl.
|
||
- apply nr.
|
||
- intros.
|
||
apply idem.
|
||
Defined.
|
||
|
||
Definition product {A B : Type} : FSet A -> FSet B -> FSet (A * B).
|
||
Proof.
|
||
intros X Y.
|
||
hrecursion X.
|
||
- apply ∅.
|
||
- intro a.
|
||
apply (single_product a Y).
|
||
- apply (∪).
|
||
- apply assoc.
|
||
- apply comm.
|
||
- apply nl.
|
||
- apply nr.
|
||
- intros ; apply union_idem.
|
||
Defined.
|
||
|
||
Definition disjoint_sum {A B : Type} (X : FSet A) (Y : FSet B) : FSet (A + B) :=
|
||
(fset_fmap inl X) ∪ (fset_fmap inr Y).
|
||
|
||
Local Ltac remove_transport
|
||
:= intros ; apply path_forall ; intro Z ; rewrite transport_arrow
|
||
; rewrite transport_const ; simpl.
|
||
Local Ltac pointwise
|
||
:= repeat (f_ap) ; try (apply path_forall ; intro Z2) ;
|
||
rewrite transport_arrow, transport_const, transport_sigma
|
||
; f_ap ; hott_simpl ; simple refine (path_sigma _ _ _ _ _)
|
||
; try (apply transport_const) ; try (apply path_ishprop).
|
||
|
||
Context `{Univalence}.
|
||
|
||
(** Separation axiom for finite sets. *)
|
||
Definition separation (A B : Type) : forall (X : FSet A) (f : {a | a ∈ X} -> B), FSet B.
|
||
Proof.
|
||
hinduction.
|
||
- intros f.
|
||
apply ∅.
|
||
- intros a f.
|
||
apply {|f (a; tr idpath)|}.
|
||
- intros X1 X2 HX1 HX2 f.
|
||
pose (fX1 := fun Z : {a : A & a ∈ X1} => f (pr1 Z;tr (inl (pr2 Z)))).
|
||
pose (fX2 := fun Z : {a : A & a ∈ X2} => f (pr1 Z;tr (inr (pr2 Z)))).
|
||
specialize (HX1 fX1).
|
||
specialize (HX2 fX2).
|
||
apply (HX1 ∪ HX2).
|
||
- remove_transport.
|
||
rewrite assoc.
|
||
pointwise.
|
||
- remove_transport.
|
||
rewrite comm.
|
||
pointwise.
|
||
- remove_transport.
|
||
rewrite nl.
|
||
pointwise.
|
||
- remove_transport.
|
||
rewrite nr.
|
||
pointwise.
|
||
- remove_transport.
|
||
rewrite <- (idem (Z (x; tr 1%path))).
|
||
pointwise.
|
||
Defined.
|
||
|
||
(** [FSet A] has decidable emptiness. *)
|
||
Definition isEmpty {A : Type} (X : FSet A) : Decidable (X = ∅).
|
||
Proof.
|
||
hinduction X ; try (intros ; apply path_ishprop).
|
||
- apply (inl idpath).
|
||
- intros.
|
||
refine (inr (fun p => _)).
|
||
refine (transport (fun Z : hProp => Z) (ap (fun z => a ∈ z) p) _).
|
||
apply (tr idpath).
|
||
- intros X Y H1 H2.
|
||
destruct H1 as [p1 | p1], H2 as [p2 | p2].
|
||
* left.
|
||
rewrite p1, p2.
|
||
apply nl.
|
||
* right.
|
||
rewrite p1, nl.
|
||
apply p2.
|
||
* right.
|
||
rewrite p2, nr.
|
||
apply p1.
|
||
* right.
|
||
intros p.
|
||
apply p1.
|
||
apply fset_ext.
|
||
intros.
|
||
apply path_iff_hprop ; try contradiction.
|
||
intro H1.
|
||
refine (transport (fun z => a ∈ z) p _).
|
||
apply (tr(inl H1)).
|
||
Defined.
|
||
End operations.
|
||
|
||
Section operations_decidable.
|
||
Context {A : Type}.
|
||
Context `{MerelyDecidablePaths A}.
|
||
Context `{Univalence}.
|
||
|
||
Global Instance isIn_decidable (a : A) : forall (X : FSet A),
|
||
Decidable (a ∈ X).
|
||
Proof.
|
||
hinduction ; try (intros ; apply path_ishprop).
|
||
- apply _.
|
||
- apply (m_dec_path _).
|
||
- apply _.
|
||
Defined.
|
||
|
||
Global Instance fset_member_bool : hasMembership_decidable (FSet A) A :=
|
||
fun a X =>
|
||
match (dec a ∈ X) with
|
||
| inl _ => true
|
||
| inr _ => false
|
||
end.
|
||
|
||
Global Instance subset_decidable : forall (X Y : FSet A), Decidable (X ⊆ Y).
|
||
Proof.
|
||
hinduction ; try (intros ; apply path_ishprop).
|
||
- apply _.
|
||
- apply _.
|
||
- unfold subset in *.
|
||
apply _.
|
||
Defined.
|
||
|
||
Global Instance fset_subset_bool : hasSubset_decidable (FSet A).
|
||
Proof.
|
||
intros X Y.
|
||
apply (if (dec (X ⊆ Y)) then true else false).
|
||
Defined.
|
||
|
||
Global Instance fset_intersection : hasIntersection (FSet A)
|
||
:= fun X Y => {|X & (fun a => a ∈_d Y)|}.
|
||
|
||
Definition difference := fun X Y => {|X & (fun a => negb a ∈_d Y)|}.
|
||
End operations_decidable.
|
||
|
||
Section FSet_cons_rec.
|
||
Context `{A : Type}.
|
||
|
||
Variable (P : Type)
|
||
(Pset : IsHSet P)
|
||
(Pe : P)
|
||
(Pcons : A -> FSet A -> P -> P)
|
||
(Pdupl : forall X a p, Pcons a ({|a|} ∪ X) (Pcons a X p) = Pcons a X p)
|
||
(Pcomm : forall X a b p, Pcons a ({|b|} ∪ X) (Pcons b X p)
|
||
= Pcons b ({|a|} ∪ X) (Pcons a X p)).
|
||
|
||
Definition FSet_cons_rec (X : FSet A) : P :=
|
||
FSetC_prim_rec A P Pset Pe
|
||
(fun a Y p => Pcons a (FSetC_to_FSet Y) p)
|
||
(fun _ _ => Pdupl _ _)
|
||
(fun _ _ _ => Pcomm _ _ _)
|
||
(FSet_to_FSetC X).
|
||
|
||
Definition FSet_cons_beta_empty : FSet_cons_rec ∅ = Pe := idpath.
|
||
|
||
Definition FSet_cons_beta_cons (a : A) (X : FSet A)
|
||
: FSet_cons_rec ({|a|} ∪ X) = Pcons a X (FSet_cons_rec X)
|
||
:= ap (fun z => Pcons a z _) (repr_iso_id_l _).
|
||
End FSet_cons_rec.
|