HITs-Examples/FSet.v

535 lines
14 KiB
Coq
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Require Import HoTT.
Require Export HoTT.
Require Import FunextAxiom.
Module Export FinSet.
Section FSet.
Variable A : Type.
Private Inductive FSet : Type :=
| E : FSet
| L : A -> FSet
| U : FSet -> FSet -> FSet.
Notation "{| x |}" := (L x).
Infix "" := U (at level 8, right associativity).
Notation "" := E.
Axiom assoc : forall (x y z : FSet ),
x (y z) = (x y) z.
Axiom comm : forall (x y : FSet),
x y = y x.
Axiom nl : forall (x : FSet),
x = x.
Axiom nr : forall (x : FSet),
x = x.
Axiom idem : forall (x : A),
{| x |} {|x|} = {|x|}.
Axiom trunc : IsHSet FSet.
Fixpoint FSet_rec
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet)
{struct x}
: P
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P with
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => e
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => l a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => u
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
end) assocP commP nlP nrP idemP H.
Axiom FSet_rec_beta_assoc : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x y z : FSet),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (assoc x y z)
=
(assocP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
(FSet_rec P H e l u assocP commP nlP nrP idemP z)
).
Axiom FSet_rec_beta_comm : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x y : FSet),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (comm x y)
=
(commP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
(FSet_rec P H e l u assocP commP nlP nrP idemP y)
).
Axiom FSet_rec_beta_nl : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nl x)
=
(nlP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
).
Axiom FSet_rec_beta_nr : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : FSet),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (nr x)
=
(nrP (FSet_rec P H e l u assocP commP nlP nrP idemP x)
).
Axiom FSet_rec_beta_idem : forall
(P : Type)
(H: IsHSet P)
(e : P)
(l : A -> P)
(u : P -> P -> P)
(assocP : forall (x y z : P), u x (u y z) = u (u x y) z)
(commP : forall (x y : P), u x y = u y x)
(nlP : forall (x : P), u e x = x)
(nrP : forall (x : P), u x e = x)
(idemP : forall (x : A), u (l x) (l x) = l x)
(x : A),
ap (FSet_rec P H e l u assocP commP nlP nrP idemP) (idem x)
=
idemP x.
(* Induction principle *)
Fixpoint FSet_ind
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
(lP : forall a: A, P (L a))
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
(commP : forall (x y: FSet) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px)
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x : FSet)
{struct x}
: P x
:= (match x return _ -> _ -> _ -> _ -> _ -> _ -> P x with
| E => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => eP
| L a => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => lP a
| U y z => fun _ => fun _ => fun _ => fun _ => fun _ => fun _ => uP y z
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
end) H assocP commP nlP nrP idemP.
Axiom FSet_ind_beta_assoc : forall
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
(lP : forall a: A, P (L a))
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
(commP : forall (x y: FSet) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px)
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x y z : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP)
(assoc x y z)
=
(assocP x y z
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP z)
).
Axiom FSet_ind_beta_comm : forall
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
(lP : forall a: A, P (L a))
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
(commP : forall (x y : FSet) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px)
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x y : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (comm x y)
=
(commP x y
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
(FSet_ind P H eP lP uP assocP commP nlP nrP idemP y)
).
Axiom FSet_ind_beta_nl : forall
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
(lP : forall a: A, P (L a))
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
(commP : forall (x y : FSet) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px)
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nl x)
=
(nlP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
).
Axiom FSet_ind_beta_nr : forall
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
(lP : forall a: A, P (L a))
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
(commP : forall (x y : FSet) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px)
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x : FSet),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (nr x)
=
(nrP x (FSet_ind P H eP lP uP assocP commP nlP nrP idemP x)
).
Axiom FSet_ind_beta_idem : forall
(P : FSet -> Type)
(H : forall a : FSet, IsHSet (P a))
(eP : P E)
(lP : forall a: A, P (L a))
(uP : forall (x y: FSet), P x -> P y -> P (U x y))
(assocP : forall (x y z : FSet)
(px: P x) (py: P y) (pz: P z),
assoc x y z #
(uP x (U y z) px (uP y z py pz))
=
(uP (U x y) z (uP x y px py) pz))
(commP : forall (x y : FSet) (px: P x) (py: P y),
comm x y #
uP x y px py = uP y x py px)
(nlP : forall (x : FSet) (px: P x),
nl x # uP E x eP px = px)
(nrP : forall (x : FSet) (px: P x),
nr x # uP x E px eP = px)
(idemP : forall (x : A),
idem x # uP (L x) (L x) (lP x) (lP x) = lP x)
(x : A),
apD (FSet_ind P H eP lP uP assocP commP nlP nrP idemP) (idem x)
=
idemP x.
End FSet.
Parameter A : Type.
Parameter A_eqdec : forall (x y : A), Decidable (x = y).
Definition deceq (x y : A) :=
if dec (x = y) then true else false.
Theorem deceq_sym : forall x y, deceq x y = deceq y x.
Proof.
intros x y.
unfold deceq.
destruct (dec (x = y)) ; destruct (dec (y = x)) ; cbn.
- reflexivity.
- pose (n (p^)) ; contradiction.
- pose (n (p^)) ; contradiction.
- reflexivity.
Defined.
Arguments E {_}.
Arguments U {_} _ _.
Arguments L {_} _.
Theorem idemU : forall x : FSet A, U x x = x.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2) ; cbn.
- apply nl.
- apply idem.
- intros x y P Q.
rewrite assoc.
rewrite (comm A x y).
rewrite <- (assoc A y x x).
rewrite P.
rewrite (comm A y x).
rewrite <- (assoc A x y y).
rewrite Q.
reflexivity.
Defined.
Definition isIn : A -> FSet A -> Bool.
Proof.
intros a.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
- exact false.
- intro a'. apply (deceq a a').
- apply orb.
- intros x y z. destruct x; reflexivity.
- intros x y. destruct x, y; reflexivity.
- intros x. reflexivity.
- intros x. destruct x; reflexivity.
- intros a'. destruct (deceq a a'); reflexivity.
Defined.
Set Implicit Arguments.
Definition comprehension :
(A -> Bool) -> FSet A -> FSet A.
Proof.
intros P.
simple refine (FSet_rec A _ _ _ _ _ _ _ _ _ _).
- apply E.
- intro a.
refine (if (P a) then L a else E).
- apply U.
- intros. cbv. apply assoc.
- intros. cbv. apply comm.
- intros. cbv. apply nl.
- intros. cbv. apply nr.
- intros. cbv.
destruct (P x); simpl.
+ apply idem.
+ apply nl.
Defined.
Definition intersection :
FSet A -> FSet A -> FSet A.
Proof.
intros X Y.
apply (comprehension (fun (a : A) => isIn a X) Y).
Defined.
Lemma intersection_E : forall x,
intersection E x = E.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- reflexivity.
- intro a.
reflexivity.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
apply nl.
Defined.
Theorem intersection_La : forall a x,
intersection (L a) x = if isIn a x then L a else E.
Proof.
intro a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- reflexivity.
- intro b.
cbn.
rewrite deceq_sym.
unfold deceq.
destruct (dec (a = b)).
* rewrite p ; reflexivity.
* reflexivity.
- unfold intersection.
intros x y P Q.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y).
* apply idem.
* apply nr.
* apply nl.
* apply nl.
Defined.
Theorem comprehension_or : forall ϕ ψ x,
comprehension (fun a => orb (ϕ a) (ψ a)) x = U (comprehension ϕ x) (comprehension ψ x).
Proof.
intros ϕ ψ.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- cbn. symmetry ; apply nl.
- cbn. intros.
destruct (ϕ a) ; destruct (ψ a) ; symmetry.
* apply idem.
* apply nr.
* apply nl.
* apply nl.
- simpl. intros x y P Q.
cbn.
rewrite P.
rewrite Q.
rewrite <- assoc.
rewrite (assoc A (comprehension ψ x)).
rewrite (comm A (comprehension ψ x) (comprehension ϕ y)).
rewrite <- assoc.
rewrite <- assoc.
reflexivity.
Defined.
Theorem intersection_isIn : forall a x y,
isIn a (intersection x y) = andb (isIn a x) (isIn a y).
Proof.
intros a.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; cbn.
- intros y.
rewrite intersection_E.
reflexivity.
- intros b y.
rewrite intersection_La.
unfold deceq.
destruct (dec (a = b)) ; cbn.
* rewrite p.
destruct (isIn b y).
+ cbn.
unfold deceq.
destruct (dec (b = b)).
{ reflexivity. }
{ pose (n idpath). contradiction. }
+ reflexivity.
* destruct (isIn b y).
+ cbn.
unfold deceq.
destruct (dec (a = b)).
{ pose (n p). contradiction. }
{ reflexivity. }
+ reflexivity.
- intros x y P Q z.
enough (intersection (U x y) z = U (intersection x z) (intersection y z)).
rewrite X.
cbn.
rewrite P.
rewrite Q.
destruct (isIn a x) ; destruct (isIn a y) ; destruct (isIn a z) ; reflexivity.
admit.
Admitted.
Theorem intersection_assoc : forall x y z,
intersection x (intersection y z) = intersection (intersection x y) z.
Proof.
simple refine (FSet_ind A _ _ _ _ _ _ _ _ _ _) ; try (intros ; apply set_path2).
- intros y z.
cbn.
rewrite intersection_E.
rewrite intersection_E.
rewrite intersection_E.
reflexivity.
- intros a y z.
cbn.
rewrite intersection_La.
rewrite intersection_La.
rewrite intersection_isIn.
destruct (isIn a y).
* rewrite intersection_La.
destruct (isIn a z).
+ reflexivity.
+ reflexivity.
* rewrite intersection_E.
reflexivity.
- unfold intersection. cbn.
intros x y P Q z z'.
rewrite comprehension_or.
rewrite P.
rewrite Q.
rewrite comprehension_or.
cbn.
rewrite comprehension_or.
reflexivity.